A Low Latency, Highly Available Wide Area Network (WAN)

March 11, 2014

Dan Brancaccio, WISP Technical Architect
Daniel Maibaum, Harris Program Manager
Acknowledgement and Disclaimer

• **Acknowledgment:** This material is based upon work supported by the Department of Energy under Award Number DE-OE0000364.

• **Disclaimer:** This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
WISP’s Communication Needs

• Move synchrophasor data around the entire Western Interconnection among 19 parties (everyone with a phasor measurement unit (PMU) on their system)
• Low latency, high volume important
WISP’s Communication Needs

• High availability, reliability, and cyber security:
 o Expect operators to use synchrophasor data to make operating decisions in near real time
 o Possible use of WAN for automated controls
WISP Specified:

- Redundant backbone
- Private, dedicated infrastructure
- 24/7 dedicated Network Operation Center (NOC)
- Centrally managed access by Peak Reliability
- Contract with each Participant for ‘last mile’ connection
WISP Specified (con’t):

- One-way latency ≤ 30 ms average over 10 minutes between edge routers
- Jitter ≤ 2 ms average over 10 minutes
- Availability to Reliability Centers 99.997%
- Availability to single access participant 99.94%
- Encrypted transmission
- Capable of performance at high volume data transmission – 10X expected initial signal volume of 2100 measurements
All WISP Participants connected to WAN
All Participants are transmitting synchrophasor data to Peak Reliability, many are sharing data peer-to-peer
WAN Performance has exceeded requirements
 - Average latency 19 ms (30 ms specified)
 - Average jitter 1.4 ms (2 ms specified)
 - Availability at Reliability Centers and Dual Access Participants has been 100 percent
HARRIS NETWORK EXPERIENCE

• Peak Reliability (formerly Western Electricity Coordinating Council)
 – Western Interconnection Synchrophasor Project (WISP) WAN

• Department of Transportation
 – Federal Aviation Administration (FAA)
 • FAA Telecommunications Network (FTI) Contract
 • Dual Core “Red Core” Network Contract

• Department of Defense
 – Defense Information Systems Agency (DISA)
 • DISN Access Transport Services (DATS) Contract

• Private Industry
 – Harris Corporation
 • Harris Corporation Data/Voice Network

• Healthcare
 – Health Management Associates (HMA)
 • Network Infrastructure Transition Contract
• Harris Trusted Enterprise Network (HTEN)
 – A Nationwide, Terrestrial, High Capacity Backbone
 • Multi-Protocol Label Switched (MPLS) Wide Area Network (WAN)
 • > 15,000 Fiber Route Miles
 • 100 gigabits of capacity on each route
 • > 60 points of presence across the US
 • Last mile access via local telecommunication providers
 – Designed to Transport Mission Critical Voice, Video, and Data Within a Private Environment
 – Predicated on Four (4) Major Tenets:
 • Private/Secure
 • High Availability
 • High Throughput/Low Latency
 • Focused Customer Care
HTEN DIFFERENTIATORS

Private/Secure
- Separate PE Routers and Switching Equipment
- Defense in Depth Security Approach
- Private PE Routers and Separate VRF Tables
- No Direct Peering Points with the Public Internet
- Secure Gateway Services
- Multiple Layers of Security and Optional Security Services

High Availability
- Equipment Redundancy
- Physical and Logical Circuit Diversity
- 99.999% Availability

High Throughput/Low Latency
- Customized Routing Plans
- Deterministic Quality of Service (QoS)
- < 50ms of Latency (One Way) Across the U.S.

Customer Focused Care
- 24 x 7 x 365 Harris Operations Center
- 24 x 7 x 365 Security Operations Center
- Measures of Effectiveness (MOEs)
- Managed Service Network Solutions
- System Domain Focus
WISP WAN ARCHITECTURE

- **Private Optical Infrastructure**
 - No internet connectivity
 - Dedicated provisioning team
 - Field Tech Force cleared via federal background check
 - Allocated portion optical transport for PEAK purpose built WAN

- **Private MPLS CORE WECC Routers**
 - Routers only used for WECC services
 - Private IP address space for router management

- **Security Systems Guard the Infrastructure**
 - Firewalls
 - Anti-virus appliances
 - Intrusion prevention systems
 - 24 x 7 security operations control center
 - Internal audits

- **Security Systems Guard the Data**
 - Key Server
 - GETVPN
WISP WAN SLA / METRICS

<table>
<thead>
<tr>
<th>Service Level Category / Description</th>
<th>Monthly Performance Target based on 24/7 operation</th>
<th>Weighting Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPLS Core Network</td>
<td>100.00%</td>
<td>40%</td>
</tr>
</tbody>
</table>
| Participating Entity with single access without diversity | 100-99.95%
99.949-99.44%
99.43-98.89%
98.88-0.00% | 0%
10%
30%
50% |
| Maximum MPLS Latency (one way) | 30ms average per 10 minute period | 10% |
| WAN MPLS Jitter. | 2ms average per 10 minute period | 10% |
| Unauthorized WAN Move/Add/Change. | 100% change success rate | 2% |

Performance Targets

Delivered Latency

<table>
<thead>
<tr>
<th>UTILITY</th>
<th>LATENCY*</th>
<th>WITH GetVPN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21 ms</td>
<td>24 ms</td>
</tr>
<tr>
<td>2</td>
<td>18 ms</td>
<td>21 ms</td>
</tr>
<tr>
<td>3</td>
<td>11 ms</td>
<td>13 ms</td>
</tr>
<tr>
<td>4</td>
<td>19 ms</td>
<td>22 ms</td>
</tr>
<tr>
<td>5</td>
<td>20 ms</td>
<td>22 ms</td>
</tr>
<tr>
<td>6</td>
<td>22 ms</td>
<td>25 ms</td>
</tr>
<tr>
<td>7</td>
<td>18 ms</td>
<td>24 ms</td>
</tr>
</tbody>
</table>

* Latency Requirement <= 30 ms
BACKGROUND

- Objective – rapid response to address and resolve network issues and outages
- Dual Access Facilities experienced 100% availability in 2013
- In 2013, there were 45 outage events with an average MTTR of 1.66 hour

MTTR = \frac{\text{Sum of Outage Time (over period)}}{\text{Sum of Outages (over period)}}
Service Availability
Single-Access Facility

<table>
<thead>
<tr>
<th>Month</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2013</td>
<td>0.99976</td>
</tr>
<tr>
<td>September 2013</td>
<td>0.99886</td>
</tr>
<tr>
<td>October 2013</td>
<td>0.99988</td>
</tr>
<tr>
<td>November 2013</td>
<td>0.99995</td>
</tr>
<tr>
<td>December 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>January 2014</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

September 2013

- Telecommunications Partner maintenance scheduled as non-service affecting went awry. 5-hour outage incurred.
Service Availability

Reliability Centers

<table>
<thead>
<tr>
<th>Month</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>September 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>October 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>November 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>December 2013</td>
<td>1.00000</td>
</tr>
<tr>
<td>January 2014</td>
<td>1.00000</td>
</tr>
</tbody>
</table>

- **Required Availability**

[Graph showing service availability for each month with required availability highlighted.]
Backbone Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Outages</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>9</td>
<td>8</td>
<td>4</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Unscheduled Outages</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Background

- 48 Scheduled Outages
- 28 Unscheduled Outages
- All WAN Point of Presence (POP) locations have a minimum of 3 routable paths
- 0 Impacts to Peak Reliability services
Peak Reliability
Participating Entity Bandwidth Utilization (DS1)
January 2014

<table>
<thead>
<tr>
<th>Configured</th>
<th>1536</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Receive kbps</td>
<td>111.54</td>
<td>64.9</td>
<td>1.78</td>
<td>1.93</td>
<td>780.34</td>
<td>1001.23</td>
<td>73.94</td>
<td>47</td>
<td>86.29</td>
<td>1.84</td>
<td>1.83</td>
<td>0.04</td>
<td>0.04</td>
<td>1.12</td>
<td>117.88</td>
<td>108.38</td>
<td>73.94</td>
<td>47</td>
<td>86.29</td>
</tr>
<tr>
<td>Peak Receive kbps</td>
<td>124.1</td>
<td>70.23</td>
<td>3.6</td>
<td>4.17</td>
<td>830.4</td>
<td>1095.71</td>
<td>79.1</td>
<td>51.18</td>
<td>100.13</td>
<td>3.51</td>
<td>3.16</td>
<td>1.31</td>
<td>1.3</td>
<td>2.94</td>
<td>133.88</td>
<td>116.6</td>
<td>3.99</td>
<td>538.35</td>
<td>3.64</td>
</tr>
<tr>
<td>Average Transmit kbps</td>
<td>314.29</td>
<td>272.41</td>
<td>1058.64</td>
<td>323.19</td>
<td>2.21</td>
<td>215.4</td>
<td>288.65</td>
<td>250.08</td>
<td>197.55</td>
<td>311.83</td>
<td>66.24</td>
<td>79.73</td>
<td>55.51</td>
<td>270.93</td>
<td>512.83</td>
<td>515.61</td>
<td>587.63</td>
<td>293.56</td>
<td>43.35</td>
</tr>
<tr>
<td>Peak Transmit kbps</td>
<td>329.45</td>
<td>287.97</td>
<td>1214.79</td>
<td>355.83</td>
<td>8.14</td>
<td>240.7</td>
<td>302.58</td>
<td>286.69</td>
<td>212.77</td>
<td>326.52</td>
<td>78.48</td>
<td>522.54</td>
<td>125.65</td>
<td>289.05</td>
<td>542.42</td>
<td>554.35</td>
<td>618.76</td>
<td>310.97</td>
<td>49.39</td>
</tr>
</tbody>
</table>

Utilization (kbps)
1) Rate Limit VLAN #1
2) Size VLAN #1 to exceed expected Traffic

1) Rate Limit VLAN #2
2) Size VLAN #2 to exceed expected Traffic

- Virtual LANs (VLAN) create multiple layer-3 networks within a layer-2 network – mutually isolating packets
- Network backbone allocation can be expanded to handle increased traffic load
Upgrades

• Update router configuration, VLANs, CoS, etc. 10-15 business days
• Bandwidth increases 90-120 days
• Adding redundancy/diversity – new telco and equipment delivery – 90-180 days

New Sites

• 90-120 days

New Network

• Private Network establishment – 150-180 days ARO
• Site transition on-ramping - 180 days ARO
Welcome to the Junos Pulse Secure Access Service

Web Bookmarks

- Remedy Ticketing System
- WECC Orion Network Performance Monitoring
- WECC Sharepoint Portal

Copyright © 2001-2011 Juniper Networks, Inc. All rights reserved.
Questions?

Dan Brancaccio – DBrancaccio@BridgeEnergyGroup.com
Daniel Maibaum – dmaibaum@harris.com