Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring

NASPI Meeting, October 17-18, 2012, Atlanta, GA - Page 1

Demonstration: USVI-WAPA Project Team

Georgia Tech:

Evangelos Farantatos, GRA, Renke Huang, GRA George Cokkinides, Faculty, Sakis Meliopoulos, Faculty

USVI-WAPA:

Clinton Hedrington, Cordell Jacobs, Allison Gregory Niel Vanderpool

NYPA: Bruce Fardanesh, George Stefopoulos

Demonstration: USVI-WAPA Project Overview

Project Objectives and Scope

This project addresses four fundamental problems in the operation of any electric power network, let it be the national grid, a distribution circuit with distributed resources or a μ Grid:

- (a) Real time modeling of the system via the proposed distributed dynamic state estimation using synchrophasor technology
- (b) Parameter identification of important components of the system such as generating units
- (c) Stability monitoring and prediction of eminent instabilities
- (d) Disturbance "Play Back"

This work is fundamental for power system operations and optimization – we believe that the successful completion of the proposed work will provide a better infrastructure for power system operations and control.

Demonstration: USVI-WAPA Distributed State Estimator

Distributed State Estimation

Substation Level SE → Synthesis of System Wide State at the Control Center Enabling Technology: GPS-Synchronized Measurements

The SuperC Concept (Distributed SE)

The SuperC is conceptually very simple:

- 1. Utilize all available data (Relays, DFRs, PMUs, Meters, etc.)
- 2. Utilize a detailed substation model (three-phase, breakeroriented model, instrumentation channel inclusive and data acquisition model inclusive).
- Use "Derived" and "Virtual" Measurements by Application of Physical Laws
- At least one GPS synchronized device (PMU, Relay with PMU, etc.) → Results on UTC time enabling a truly decentralized State Estimator

Distributed Dynamic State Estimation Implementation

The Estimator is Defined in Terms of:

- Model
- State
- Measurement Set
- Estimation Method

Observability

Redundancy

System is Represented with a Set of Differential Equations (DE) The Dynamic State Estimator Fits the Streaming Data to the Dynamic Model (DE) of the System

Distributed SE Measurement Set

- Any Measurement at the Substation from Any IED (Relays, Meters, FDR, PMUs, etc.)
- Data From at Least one GPS-Synchronized Device
- Derived Measurements
 - Based on Topology
- Virtual Measurements
 - Kirchoff's Current Law
 - Model Equations
- Pseudo-Measurements

Missing Phase Measurements Neutral/Shield Current Measurement Neutral Voltage

Object Oriented Measurement Model

Measurement Types:

- •Actual Across Measurement: eg. voltage measurement
- •Pseudo Across Measurement: eg. neutral voltage measurement
- •Actual Through Measurement (related to a device): eg. current measurement
- •Pseudo Through Measurement (related to a device)

Power System Component Model (Dynamic Model \rightarrow Integration \rightarrow Algebraic Model):

$$\begin{bmatrix} i(t) \\ 0 \\ i(t_m) \\ 0 \end{bmatrix} = Y_{eq} \begin{bmatrix} v(t) \\ y(t) \\ v(t_m) \\ y(t_m) \end{bmatrix} + \begin{bmatrix} v^T(t) & v^T(t_m) & y^T(t_m) \end{bmatrix} \cdot F_{eq} \cdot \begin{bmatrix} v(t) \\ y(t) \\ v(t_m) \\ y(t_m) \end{bmatrix} - b_{eq}$$

where
$$b_{eq} = \sum_{i} A_{i} \cdot \begin{bmatrix} v(t-i \cdot h) \\ y(t-i \cdot h) \end{bmatrix} + \sum_{i} B_{i} \cdot \begin{bmatrix} i(t-i \cdot h) \\ 0 \end{bmatrix} + C$$

Each Measurement is expressed as a function of the states (at most quadratic):

$$z_{k}(t) = \sum_{i} a_{i,t}^{k} \cdot x_{i}(t) + \sum_{i} a_{i,tm}^{k} \cdot x_{i}(t_{m}) + \sum_{i,j} b_{i,j,t}^{k} \cdot x_{i}(t) \cdot x_{j}(t) + \sum_{i,j} b_{i,j,tm}^{k} \cdot x_{i}(t_{m}) \cdot x_{j}(t_{m}) + c_{k}(t) + \eta_{k}(t) + \eta_{k}($$

Distributed State Estimation

Derived Measurements - Examples

Distributed State Estimation

Virtual Measurements - Examples

Distributed SE Measurement Set Non-Synchronized Measurements

Non-GPS Synchronized Relays provide phasors referenced on "phase A Voltage". The phase A Voltage phase is ZERO.

The SuperC provides a reliable and accurate estimate of the phase A voltage phasor.

$$\widetilde{A}_{sync} = \widetilde{A}_{meas} e^{j\alpha}$$

$$\widetilde{A}_{sync} = \widetilde{A}_{meas} e^{j\alpha} =$$

$$A_{real} \cos \alpha - A_{imag} \sin \alpha +$$

$$j(A_{real} \sin \alpha + A_{imag} \cos \alpha)$$

 α is a synchronizing unknown variable.

 $cos(\alpha)$ and $sin(\alpha)$ are unknown variables in the state estimation algorithm. There is one α variable for each non-synchronized relay.

Distributed SE: Algorithm

$$Min \quad J = \sum_{v \in phasor} \frac{\tilde{\eta}_v^* \tilde{\eta}_v}{\sigma_v^2} + \sum_{v \in non-syn} \frac{\eta_v \eta_v}{\sigma_v^2}$$

Solution:
$$x^{\nu+1} = x^{\nu} + A[z - h(x)]$$

where:
$$A = \left[H^T W H\right]^{-1} \left[H^T W\right]$$

Efficiency

Demonstrated the ability to execute the state estimator 60 times per second for substantial size substations.

There is still space for improved computational efficiency.

Distributed State Estimation

Synthesis of System Wide State at the Control Center

Demonstration: USVI-WAPA Master DSE

SuperCalibrator Master - Client

SuperCalibrator Master Reports

- Animated SLD's
- Etc...

SuperCalibrator Master & Client

Program WinIGS-Q - Form IGS M013

Demonstration: USVI-WAPA The USVI-WAPA System

The USVI-WAPA System

NASPI Meeting, October 17-18, 2012, Atlanta, GA – Page 22

VIWAPA – LONGBAY 35 kV Substation Instrumentation

Installation of PMUs at Longbay:

SEL 421 (3)

Numerical Relays at Longbay:

SEL 587 (4) AREVA MiCOM P543 (3) AREVA MiCOM 633 (2) AREMA MiCOM P142 (10)

PMU Measurements: 18

Numerical Relay Measurements: 132

View of WAPA's Longbay substation

VIWAPA – RHPP 35 kV Substation Instrumentation

VIWAPA – RHPP 35 kV Substation Instrumentation

Installation of PMUs and Relays at RPHH SEL 421 (3) SEL 451 (4) GE 60 (1)

Numerical Relays at RPHH

SEL 487 (6) AREVA MiCOM P142 (6) AREVA MiCOM P543 (5) AREVA MiCOM P632 (1) AREVA MiCOM P642 (3) AREVA MiCOM P645 (3)

PMU Measurements: 40 (max possible 71) **Numerical Relay Measurements**: 150

VIWAPA – TUTU 35 kV Substation Instrumentation

Installation of PMUs at TUTU

SEL 734 (1)

Numerical Relays at TUTU

SEL 587 (1) AREVA MiCOM P543 (2) AREVA MiCOM P544 (2) AREVA MiCOM 634 (1) AREMA MiCOM P142 (6)

PMU Measurements: 3 Numerical Relay Measurements: 39

VIWAPA – EAST END 35 kV Substation Instrumentation

Installation of PMUs at EAST END

SEL 734 (1)

Numerical Relays at EAST END

AREVA MICOM P542 (4) AREVA MICOM P543 (4) AREVA MICOM P633 (1) AREMA MICOM P141 (2) AREMA MICOM P142 (4) AREMA MICOM P143 (2)

PMU Measurements: 3 Numerical Relay Measurements: 51

VIWAPA's EAST END Substation

VIWAPA – St JOHN 35 kV Substation Instrumentation

Installation of PMUs at St JOHN

SEL 734 (1)

Numerical Relays at St JOHN

AREVA MICOM P633 (2) AREVA MICOM P542 (2) AREVA MICOM P543 (2) AREMA MICOM P141 (1) AREMA MICOM P142 (2) AREMA MICOM P143 (3)

PMU Measurements: 3

Numerical Relay Measurements: 36

VIWAPA's St JOHN substation

The USVI-WAPA System The Communications Infrastructure

The USVI-WAPA System The Communications Infrastructure

The USVI-WAPA System The Communications Infrastructure

To Master Stations

Demonstration: USVI-WAPA Substation DSE and Master

Demonstration: USVI-WAPA

Substation DSE and Master

NETL

Master

UI and Visualization

Substation DSE UI and Visualization

Georgialne

Technolog

Demonstration: USVI-WAPA Performance Evolution

Performance Evolution: QSE: Timing Results* - Year 1

NYPA Gilboa-l	Blenheim plant	USVI LongBay Substation				
System States	96	System States	164			
Actual Measurements	168	Actual Measurements	171			
Total Measurements (Actual + Virtual)	744	Total Measurements (Actual + Virtual)	708			
Average QSE Execution Time per Time Step	9.5 msec	Average QSE Execution Time per Time Step	13 msec			
Variability	0.5 msec	Variability	1 msec			

*PC, i7-930 Processor, 2.8 Gz

Additional Improvements Are Possible

- Additional Code Optimization
- Use of Multi-core Computers

Georgialnstitute of Technology

Performance Evolution: Distributed State Estimation Timing Results – Year 3

Timing Experiment Summary of the QSE for Long Bay Substation

•	Two kV Level Substations

- Two Transformers
- Three Transmission Lines
- Six Distribution Circuits

System States	82
Actual Measurements	171
Total Measurements (Actual + Virtual)	784
Average QSE Execution Time per Time Step	0.42 msec
Variability	0.05 msec

Performance Evolution: Distributed State Estimation Execution Time Monitor

CPU Time Usage Indicates in Real Time the Portion of the Time Used by the SE Calculations.

100%=Time Between Two Successive SE Computations. example: if SE is set to execute 60 times per second, then 100%=16.6 ms

Demonstration: USVI-WAPA Disturbance Playback

Disturbance Playback Via Distributed Dynamic State Estimation

Objective: to provide an automated playback capability of past operating conditions and disturbances.

Project objective has been accomplished.

How: the results of the distributed dynamic state estimation are stored in a circular buffer (months long) together with the model. Playback requires only start and end times.

Disturbance Play-Back: User Interface

New Approach to Historian: Substation Storage Scheme Full Model + Model Changes + Data

System Operations Can Be "Played Back" Over a User Specified Time Interval (From time t1 to time t2)

Important Application: Disturbance Play-Back

Objective:

- System Operation "Play Back" over a user specified time interval (from time t1 to time t2)
- Reconstructed state is presented via graphical visualization Techniques, (3-D rendering, animation etc) with multiple user options.

Substation Storage Scheme Full Model + Model Changes + Data

- System FULL MODEL stored once a day in WinIGS format time of day can be arbitrarily selected, for example at 2 am. (example storage follows)
- Report system changes by exception UTC time (example storage follows)
- Storage of state data: at each occurrence of the state estimator, the estimated states are stored in COMTRADE-like format. (example storage follows)

Demonstration: USVI-WAPA Substation DSE

DSE Substation Module User Interface

DSE Substation Module User Interface – Long Bay

For Help, press F1

DSE Substation Module User Interface – Long Bay

DSE Substation Module – IED Model

DSE Substation Module – The SuperCalibrator Element

Georgialnstitute of Technology

DSE Substation Module – The SuperCalibrator Element

The SuperCalibrator SubModuldes

- Phasor Data Concentrator (PDC)
- PDC Client
- Test Data Server
- Historian
- Synchrophasor Server
- Reports

The SuperCalibrator Element – PDC Component

PDC Component Attributes

PDC host Men Copy Print H	Lator Leip Z Ca PDC Name:	Synchro scal_pdc	pha Tr	sor Data Co ansmission Rate: ∏	oncentra 30	tor f/s	Cancel Server Status	OK
Host II Pa Out	Host IP Address: 172.20.2.231 Port Number 2000 Outstation ID: 1		Max Latency: Max Time Skew: Autostart		100 5 Start	ms ms Stop	Xmit / Rcv Max Latency Buffer Usage	XMIT REC
1 2 3 •	ID LB002 LB001 LB003 Ref	Processed PDC Alias VIW_LONGBAY_ VIW_LONGBAY_ VIW_LONGBAY_ VIW_LONGBAY_ MOVE AllAdd	IED L B305 B303 B307	ist Description SEL421/305 SEL421/303 SEL421/307 SEL421/307	▲ ↓ ↓ Edit	F = 0.0000 H	z O fps	
Program	WinIGS	-Q – Form IGS_I	PDAT/	ACON				Get Config

- IP Parameters
- Serviced IED List
- Desired Transmission Rate
- Max Latency
- Max Time Skew
- Test Data Server
- Historian
- Synchrophasor Server
- Reports

PDC Automatic Configuration & Channel Mapping Validation

	1000	-							
opy Print	Help								
		or Calik	prator - PD	[•] Measurement M	lanning			Cancel	ОК
	Curre Oupe	Joann			apping				
	Substation: Lo	ng Bay S	ubstation						
	PMU	PMU	PDC Channel	SCal Chan	nel	PDC	Туре		-
	(PDC)	(SCal)				Match			
1	VIW_LONGBAY_B305	LB002	VALPM	V_LB3-02_AN		Yes	Voltage Phasor		
2			VBLPM	V_LB3-02_BN		Yes	Voltage Phasor		
3			VCLPM	V_LB3-02_CN		Yes	Voltage Phasor		
4			IAWPM	C_3~0B0D_L3~0B0D_1	_3~0B0D_A	Yes	Current Phasor		
5			IBWPM	C_3~0B0D_L3~0B0D_1	_3~0B0D_B	Yes	Current Phasor		
6			ICWPM	C_3~0B0D_L3~0B0D_1	_3~0B0D_C	Yes	Current Phasor		
7	VIW_LONGBAY_B303	LB001	VALPM	V_LB3-01_AN		Yes	Voltage Phasor		
8			VBLPM	V_LB3-01_BN		Yes	Voltage Phasor		
9			VCLPM	V_LB3-01_CN		Yes	Voltage Phasor		
10			IAWPM	C_FDR11~GC_3~0A0B	1_1_3~0A0B1_A	Yes	Current Phasor		
11			IBWPM	C_FDR11~GC_3~0A0B	1_1_3~0A0B1_B	Yes	Current Phasor		
12			ICWPM	C_FDR11~GC_3~0A0B	1_1_3~0A0B1_C	Yes	Current Phasor		
13	VIW_LONGBAY_B307	LB003	VALPM	V LB3-02 AN		Yes	Voltage Phasor		
14			VBLPM	V_LB3-02_BN		Yes	Voltage Phasor		
15			VCLPM	V_LB3-02_CN		Yes	Voltage Phasor		
16			IAWPM	C_FDR12~GC_3~0A0B2_1_3~0A0B2_A		Yes	Current Phasor		
17			IBWPM	C_FDR12~GC_3~0A0B	2_1_3~0A0B2_B	Yes	Current Phasor		•
•									►
U	pdate From File		Save to File	Clear	Auto-	Set	Verif	y PDC Mapp	ing
				asurements matche	d with PDC Ch	annel			
			All Me	asurements matche		annel	,		

SuperCalibrator PDC Client – Setup Window

SuperCalibrator PDC Client – Input View Window

Test Data Server – Setup Window

DSE - Estimator Setup Window

Georgialnstitute of Technology

DSE - Synchrophasor Server – Setup Window

DSE - Estimator Setup Window

Georgialnstitute of Technology

DSE - Reports

Summary

- Distributed State Estimation Enables State Estimation at Each Cycle (Sixty Times per Second).
- The Approach Requires a Detailed Three Phase Substation Model and at Least One PMU Device.
- Four Demonstration Projects Have Provided and Will Provide Tremendous Experience.
- The Approach Has Enabled a New Disturbance Play Back Which Has Proven to be Very Useful.

