

Calibration

PMU Model Simulation: PC37.118.1 Annex C

Allen Goldstein Technical Project Manager PMU Calibration Fluke Calibration

> NASPI Toronto June 8-9, 2011

NASPI Toronto 20110609

Fluke / NIST PMU Calibrator Project

- A project to develop a commercially available PMU Calibration system
- Co-funded:
 - Fluke Calibration
 - NIST
- Schedule
 - Now: Seeking 2 or 3 beta partners
 - 21-24 August: Demo at NCSLI Conference, National Harbor, MD
 - 25 August: Tech paper at NCSLI
 - 1 Sept: Deliver system to NIST
 - Q1 2012: Open for commercial orders

Fluke's PMU Model Simulation

•Developed:

- As part of Fluke's contribution to the development of IEEE PC37.118.1
- Helps Fluke's PMU Calibrator design team understand PMU performance.

• Given to NASPI to be made freely available via the NASPI Phasor Tool Repository

FLUKE

Calibration

Motivation for Annex C

- Annex C presents the reference signal processing models
 - Used to develop and verify performance requirements in PC37.118.1
 - Given for information purposes only, and
 - does not imply being the only or recommended method for estimating synchrophasors
 - Establishes common ground for
 - performance requirements
 - confirming achievability

FLUKE

Calibration

Annex C PMU Model

PMU Model Filtering by Class

P Class response

M Class response "mask"

NASPI Toronto 20110609

Simulation User Interface

A PMU Model Control Panel	_ 🗆 🗙
- PMU-	
Sample Rate (iFsamp) 960 Reporting Rate (iFs) 30	cimate?- yes
● 60Hz ● 50Hz ● M-Class ● P-Class	no
Input	
Input Magnitude (rXm) 0.7071 Fundamental Freq (rFin)	60
Phase Shift (rPs) 0 Ramp Rate (rRf)	0
Phase Mod Freq (rFa) 6 Phase Mod Index (rKa)	0
Amplitude Mod Freq (rFx) 6 Amplitude Mod Index (rKx)	0
Harmonic Number (iNh) 7 Harmonic Index (rKh)	0
Amplitude Step Index 0 Amplitude Step Delay	60
Phase Step degrees 0 Phase Step Delay (cycles) (iKaN)	60
Generate Input	
Simulation	
Number of Nominal Cycles to Simulate (iNcyc) 120	
Settling (reports)(iNset) 10	
Simulate	
Analysis	
🗹 plot vs. Time 📃 plot vs. Freq	
Phase A 🗌 Phase B 📄 Phase C 📄 PosSeq 📄 Theory	
TVE Magnitude Error Phase Error Magnitude Phase	
Freq Fe ROCOF RFe	
Step Analysis	
Analyse Show Samp	le Points

- PMU Settings
- Input Signal Settings
 - Steady State
 - Ramp
 - AM & PM Modulation
 - Step
- Simulation Settings

Analysis Settings

FLUKE

Calibration

Steady State Examples

NASPI Toronto 20110609

Frequency Ramp Examples

NASPI Toronto 20110609

Phase Modulation (M Class, 60 Hz, 60fps)

Calibration

FLUKE

NASPI Toronto 20110609

F, ROCOF, Fe, Rfe under Phase Modulation

NASPI Toronto 20110609

Conclusion

- This PMU Model Simulation will be made freely available via the NASPI Tool Repository
 - Compiled for Win32 and Win64
 - Matlab Source code is included

Thank you

Allen Goldstein Fluke Calibration <u>allen.goldstein@fluke.com</u>