The Need for a Robust Precise Time and Frequency Alternative to Global Navigation Satellite Systems

North American Synchro Phasor Initiative Meeting October 2012 Atlanta, Georgia

Mitch Narins Chief Systems Engineer – Navigation Programs Federal Aviation Administration

Summary (Starting with the end in mind)

- Time is an important Global Navigation Satellite System (GNSS)* product, often overlooked
 - GNSS Time users greatly outnumber all other users
- GNSS is vulnerable; GNSS is vulnerable!
- There are robust alternatives but there is a need to identify and incorporate them into operations that ensure safety and security and to mitigate significant economic impact
- Precise Time is particularly important to certain ground based and airborne "discriminating" users
- For many applications authentication is as important as accuracy
- Today's status quo may not/will not be an acceptable alternative in the future as GNSS services continue to proliferate and support more and more critical operations

FAA *The Global Positioning System is the US' GNSS

The Definition of <u>Robust</u>

ro-bust, adj, [rō-'bəst, 'rō-()bəst]

a: strong and healthy; having or exhibiting strength or vigorous health.

b: (of an object) strongly formed or sturdy in construction. c: (of a process, system, organization, etc.) able to withstand or overcome adverse conditions.

... so let's agree that *Robust* Precise Time and Frequency is the provision of precise time and frequency services that are *strong, sturdy, and able to withstand or overcome adverse conditions.*

What are Adverse Conditions?

Interference

- Intentional/Unintentional
- Predictable/Unpredictable
- Manmade/Environmental
- Crude/Sophisticated (Jamming/Spoofing)
- Widespread/Localized
- Dependent on the Position, Navigation, and Timing (PNT) System (both xmtr and rcvr)
 - High power/low power
 - Line-of-sight/ground wave
 - Designed robustly/Engineered for a sunny day
- Both suppliers and users of PNT services need to recognize the potential for real-world adverse conditions and plan design, and equip accordingly

The world is changing...The world has changed

Commercially Available GPS Jammer (so called "Personal Privacy Device")

... and a few more "Personal Privacy Devices"

"Super HOT New Cigarette Case Cell Phone Jammer"

Features

Power supply: Effective Radius: Dimension: Energy Consumption: Accessories: Rechargeable Li-battery 5m 90x50x15mm 33dbm AC Adapter/Car Adapter

Specifications

Jamming Signal Frequency:

- * CDMA: 869-880MHZ
- * GSM: 925-960MHZ
- * DCS: 1805-1930MHZ
- * 3G: 2110-2170MHZ

The Problem

- GNSS-provided precise time and frequency is not robust
- Many users are not aware of the importance of time/frequency in system operations and that they derive it from GNSS
- Time and Frequency supports many critical infrastructure applications

Critical Infrastructure/Key Resource Sector	ctor Uses GPS Timing?	
	Yes	No
1. Communications Sector	X	
2. Emergency Services Sector	Х	
3. Information Technology Sector	Х	
4. Banking & Finance Sector	Х	
5. Healthcare & Public Health Sector	Х	
6. Energy/Electric Power and Oil & Natural Gas SubSector	Х	
7. Nuclear Sector	Х	
8. Dams Sector	Х	
9. Chemical Sector	Х	
10. Critical Manufacturing	Х	
11. Defense Industrial Base Sectors	Х	
12. Postal & Shipping Sector	Х	
13. Transportation Sector	Х	
14. Government Facilities Sector	Х	
15. Commercial Facilities Sector	Х	
16. National Monuments and Icons Sector		Х
17. Agriculture and Food Sector		Х
18. Water and Wastewater Sector		Х

NextGEN

Summary

15 of the18

CIKR Sectors

have some

degree of

GPS timing usage

Power Grid Requirements

- Minimum PMU requirement for time synchronization = 26 μs;
 - Corresponds to a phase error of 0.57 ° at the 60 Hz AC line frequency
 - Per *IEEE C37.118.2-2011* "Standard for Synchrophasor Data Transfer for Power Systems"
- The <u>desired</u> accuracy is 1 µs
 - Corresponds to a phase error of 0.022 °

Source: M. Lombardi, *"Microsecond Accuracy at Multiple Locations: Is it possible without GPS?,* IEEE Instrumentation and Measurement Magazine, October 2012

Why Alternate Position, Navigation, and Timing (PNT)?

- Homeland Security Presidential Directive-7 (HSPD-7) establishes a national policy to identify, prioritize, and protect critical infrastructure and services.
 - Requires use of alternate means ("a back-up") if GPS services are being used for safety or security or to prevent significant economic impact
- FAA recognizes the need to maintain operations within the National Airspace System (NAS)
- Other Critical Infrastructure/Key Resource sectors also have real time and continuity of operations requirements
- For many waiting for the source of the interference to be located and turned off is not an acceptable alternative.

National Airspace System (NAS) Alternatives

Today

- The majority of aircraft flying in the NAS have non-GPS alternatives that ensure safety [e.g., Very High Frequency Ominidirectional Range(VOR), Instrument Landing System (ILS), etc.]
- The FAA maintains a non-GNSS dependent ground based infrastructure
- Future
 - NAS capacity and efficiency improvements will rely on GNSS services
 - The FAA is exploring alternate position, navigation, and timing means to maintain safety and security and minimize economic impact in the event of a GNSS outage

National Airspace System Precise Time Requirements

Sources of Time and Frequency

WWVB GPS 10 ns Time Accuracy 0.1 – 15 ms Time Accuracy 1 x 10⁻¹³ Frequency Stability 1 x 10⁻¹⁰ - 1 x 10⁻¹² Frequency Stability ITS* (NTP) ITS* (PTP) 10 ms Time Accuracy 0.1 ms Time Accuracy 1 x 10⁻⁷ Frequency Stability 1 x 10⁻⁹ Frequency Stability *Internet Time Service *Internet Time Service Cesium (Cs) Clock **Rubidium (Rb) Clock**

- 10 ns Time Accuracy
- **Cannot Recover Time independently**
- 1 x 10⁻¹³ Frequency Stability

- 10 us Time Accuracy
- **Cannot Recover Time Independently**
- 5 x 10⁻¹¹ Frequency Stability

Sources of Time and Frequency

Loran-C

- 100 ns Time Accuracy
- 1 x 10⁻¹¹ Frequency Stability

• eLoran

- 50 ns Time Accuracy
- 1 x 10⁻¹¹ Frequency Stability

• Future HP/LF Groundwave??

- ?? ns
- 1 x 10⁻¹¹ Frequency Stability

Today's Alternate Time and Frequency Sources

- Temperature Controlled Crystal Oscillators (TCXO)
- Network Time Protocol (NTP)
- Oven Controlled Crystal Oscillators (OCXO)
- Rubidium Clocks (Rb)
- Cesium Clocks (Cs)

	Source	Frequency Accuracy	Time Uncertainty at One Day
	ТСХО	1 x 10 ⁻⁶	86.4 ms
	NTP	1 x 10 ⁻⁶ - 1 x 10 ⁻⁸	86.4 ms - 864µs
	OCXO	1 x 10 ⁻⁷ - 1 x 10 ⁻¹⁰	8.6ms – 8.6µs
	Rb	5 x 10 ⁻⁹ - 5 x 10 ⁻¹²	432µs – 432ns
	Cs	1 x 10 ⁻¹³	10 ns
	GPS	1 x 10 ⁻¹³	10 ns

ncreasing Precision

The Challenge of Robust Time Transfer

Alternative 1 Robust Satellite-Based Sources: GEOs, MEOs, and LEOs

Robust Space-Based Time Transfer

Commercially Available Controlled Reception Pattern Antennas (CRPA)

- Mitigate Radio Frequency Interference
- Provides Anti-Jam Performance

Alternative 2 Robust Wireless Ground-Based Sources

Alternative 3 Robust Wire-Based Sources

🛞 FAA

Internet Time Services

ITS* (NTP)

- 10 ms Time Accuracy
- 1 x 10⁻⁷ Frequency Stability

*Internet Time Service

• ITS* (PTP)

- 0.1 ms Time Accuracy
- 1 x 10⁻⁹ Frequency Stability

*Internet Time Service

- ITS Timing Performance Limitations
 - Use of Ethernet connections
 - Use of different lines for incoming and outgoing traffic
 - Line length differences result in timing errors
 - Errors that increase over distance cannot be corrected
 - When implemented on a wide area network (WAN) such as the Internet, where the path delays are highly variable and uncontrolled, PTP accuracy becomes similar to NTP (i.e., milliseconds)

Summary

octa-pyramid buildings

golf course Hotel

Summary (again)

- Time is an important Global Navigation Satellite System (GNSS)* product, often overlooked
 - + GNSS Time users greatly outnumber all other users
- GNSS is vulnerable; GNSS is vulnerable!
- There are robust alternatives but there is a need to identify and incorporate them into operations that ensure safety and security and to mitigate significant economic impact
- Precise Time is particularly important to certain ground based and airborne "discriminating" users
- For many applications authentication is as important as accuracy
- Today's status quo may not/will not be an acceptable alternative in the future as GNSS services continue to proliferate and support more and more critical operations

*The Global Positioning System is the US' GNSS

