
SYNCHROPHASOR 118 STANDARDS UPDATE

Ken Martin, Senior Principal Engineer Electric Power Group, LLC (EPG)

Presented at NASPI Work Group Meeting

March 12, 2014

🌟 Electric Power Group

Outline

- Standards overview
- IEEE synchrophasor standards
 - IEEE C37.118.1-2011
 - IEEE C37.118.2-2011
- IEC/IEEE synchrophasor standard
 - IEC/IEEE 60255-118-1

Synchrophasor Standard History

- First standard IEEE1344-1995
 - Time sync & sampling specified
- Second standard C37.118-2005
 - TVE test & error limits, steady-state phasor only
 - Comprehensive messaging for communication
- C37.118 split into 2 standards
 - C37.118.1-2011 for measurement
 - C37.118.2 -2011 for communication
- IEC 61850-90-5 communication
 - Synchrophasor communication adapted to 61850
- IEC 60255-118-1 synchrophasor measurement

Synchrophasor Measurement Standard IEEE C37.118.1-2011

- Retains existing steady-state requirements
- Adds measurement under dynamic conditions
 - Measurement bandwidth, tracking, and response time
- Standard covers all reported measurements
 - Phasor, frequency, & Rate of Change of Frequency (ROCOF)
- M & P performance classes
- Includes a latency test

Requirements presented in 10 tables

Example: Steady-state synchrophasor performance

Influence quantity	Reference condition	Minimum range of influence quantity over which PMU shall be within given TVE limit			
		Performance Class P		Performance Class M	
		Range	Max TVE (%)	Range	Max TVE (%)
Signal frequency range $- f_{dev}$ (test applied nominal + deviation: $f_0 \pm f_{dev}$)	F _{nominal} (f ₀)	± 2.0 Hz Report rate independe		$\begin{array}{l} \pm 2.0 \text{ Hz for } F_s < 10 \\ \pm F_s / 5 \text{ for} \\ 10 \leq F_s < 25 \\ \pm 5.0 \text{ Hz for } F_s \geq 25 \\ \text{Keyed to report} \end{array}$	1 rate
The Signal Frequency requirements at 3 ten T = nominal (~23° C	nperatures:	-		anges and meet the given ver temperature	
Signal magnitude - Voltage	100% rated	80 – 120% rated	1 Sepa	10 – 120% rated arate V & I tests	1
Signal magnitude - Current	100% rated	10 – 200% rated	1	10 – 200% rated	1
Phase angle with $ f_{in} - f_0 < 0.25 \text{ Hz}$	Constant or slowly varying angle	±π radians	1	±π radians	1

Amendment to Standard IEEE C37.118.1

- Problems reported by developers & testing
 - Typos of significance
 - Wording with dual interpretations
 - Requirements difficult/impossible to meet
- Amendment completed in December 2013
 - Fixes all typos
 - Clarifies wording
 - Relaxes or suspends ROCOF (so it does not drive designs)
 - Improves model in annex now meets all requirements
 - Fixes Ramp & Latency tests
 - Small changes in a few performance requirements

Synchrophasor Data Transfer Standard IEEE PC37.118.2 – 2011

- Backward compatible with C37.118-2005
 - New features extend for current developments
- Only specifies messaging
 - Describes messaging structure and contents
 - Can use any communication protocol or hardware
- Implementation has established communication
 - RS232 serial
 - Networks using IP protocol
- No changes have been needed

IEC/IEEE 60255-118-1

- Joint IEC/IEEE development
 - IEC-TC95 measuring relays (WG1)
 - IEEE Relay committee (WG H11)
- Covers synchrophasor measurements
 - Based on IEEE C37.118.1
 - Will generally follow same methods & requirements
- Intended to update/replace C37.118.1
- Expect completion in 2016
 - First meeting January 2014

Summary for C37.118 standard series

- PMU standards started with IEEE 1344-1995
- IEEE C37.118-2005 widely used, very successful
- IEEE C37.118.1-2011: measurements
 - IEEE C37.118.1a -2014 amendment corrects issues
- IEEE C37.118.2-2011: data communication
- IEC/IEEE 60255-118-1: synchrophasor measurement standard under development

Thank You!

Ken Martin

martin@electricpowergroup.com

201 S. Lake Ave., Ste. 400

Pasadena, CA 91101

626-685-2015

Electric Power Group

Dynamic Performance Tests

- Amplitude and phase angle modulation
 - Determines the bandwidth of the measurement
 - Emulates a system oscillation
- Constant ramp in frequency
 - Determines measurement tracking system
 - Emulates a system separation: power-load imbalance
- Step change of amplitude or phase
 - Determines response time measurement
 - Emulates a switch action