PMU-Based Monitoring of Power System Dynamics

Guanqun Wang¹, Chen-Ching Liu¹, Mahendra Patel², Evangelos Farantatos² **1. Washington State University**

2. Electric Power Research Institute

Nonlinear Dynamic Observability

A dynamic system is observable if, for any time t, the current state x(t) can be determined using only the measurements h(x(t)).

> The system is locally observable at x_t , if the matrix $O(x_t) = \frac{\partial l(x)}{\partial x}\Big|_{x=x_t}$ has a full rank. O(x) is called the observability matrix, in which $L_f^0 h_1(x)$ $l(x_t) = \begin{vmatrix} \dots \\ L_f^0 h_p(x) \\ L_f^1 h_1(x) \end{vmatrix}, \quad L_f^0 h = h , \quad L_f^1 h = L_f h = \left[\frac{\partial h}{\partial x_1} & \frac{\partial h}{\partial x_2} & \dots & \frac{\partial h}{\partial x_n} \right] \begin{vmatrix} f_1(x) \\ f_2(x) \\ \dots \\ \dots \end{vmatrix}, \quad L_f^2 h = L_f (L_f h) , \dots$

 $L_f^{n-1}h_p(x)$

> The ratio of smallest and largest singular value of observability matrix is chosen as an index to assess the level of system observability. Observability indices can be tracked along system trajectory.

NASPI, March 2015, Burlingame, CA

WASHINGTON STATE **UNIVERSITY**

observability

PMU	Generators wi
number	
14	1,8,9,10,15,16,17,18,1
15	1,4,8,9,10,15,16,17,18,

> The observability indices are much higher and always above 0, but their values differ significantly.

The observability of 15-PMU scenario is always higher than the 14-PMU scenario.

> The SC results with 15 PMUs are much closer to the simulation results. That indicates that 15 PMUs and for that specific location provide a sufficient level of confidence based on the system observability.

Rotor Angle Stability Analysis Results

Line Trip

System Size	179-bus WECC
Generator number	29
State Calculator	0.0495s
MLE	0.0434s
IVILE	0.0434s

Energy Systems

Innovation Center