

Research on Phasor Measurement Accuracy in a Real Power Grid Environment at the Distribution Level

Lingwei Zhan, Yilu Liu The University of Tennessee, Knoxville

North American SynchroPhasor Initiative March 23, 2015 San Mateo, CA

Is PMU Standard enough?

IEEE PMU Standard C37.118.1-2011 C37.118.1a-2014

Steady-state tests

- 1. Signal frequency range test
- 2. Signal magnitude test
- 3. Harmonic distortion test
- 4. Out-of-band interference test

Dynamic tests

- 1. Frequency ramp test
- 2. Modulation test (magnitude, angle)
- 3. Step change test (magnitude, angle)

Suitable for distribution level?

Data acquisition of power grid waveforms

Power grid waveforms at the distribution level (120-V) are sampled using the prototype Universal Grid Analyzer (UGA).

Prototype UGA^[1]

➢High-accuracy single phase PMU, power quality analyzer.

➢Signal to Noise Ratio (SNR) detection capability: 90 dB

[1] Lingwei Zhan, et al., "Universal Grid Analyzer Design and Development", *in Proc. 2015 IEEE Power and Energy Society General Meeting*, accepted.

Distortion of power grid waveforms

- Power grid waveforms are distorted by harmonics and noise.
- PMU Standard C37.118.1 has no requirements for
- Noise
- Harmonics (the fundamental frequency deviates from 50/60Hz).

Phasor measurement accuracy under noise condition

ational Laboratory

JNESSEE

Phasor measurement accuracy under noise condition

ational Laboratory

FNETGridEye

CURENT

Explanation

Phasor estimation equation in Annex C of C37.118.1-2011

$$X(i) = \frac{\sqrt{2}}{Gain} \sum_{k=-N/2}^{N/2} x_{(i+k)} \times W_{(k)} \times \exp(-j(i+k)\Delta t\omega_0)$$
(C.1)

Explanation: main lobe

8

Non-PMU filter windows

$$X(i) = \frac{\sqrt{2}}{Gain} \sum_{k=-N/2}^{N/2} x_{(i+k)} \times W_{(k)} \times \exp(-j(i+k)\Delta t\omega_0)$$
(C.1)

 $W_{(k)}$ is replaced with other windows.

Non-PMU filter windows

$$X(i) = \frac{\sqrt{2}}{Gain} \sum_{k=-N/2}^{N/2} x_{(i+k)} \times W_{(k)} \times \exp(-j(i+k)\Delta t\omega_0)$$
(C.1)

 $W_{(k)}$ is replaced with other windows.

Explanation

- Rectangular window has narrowest main lobe width (3dB bandwidth), therefore has best noise rejection performance;
- PMU window has widest main lobe width, therefore has worst noise rejection performance.

FNETGridEye

Phasor measurement accuracy under harmonic conditions

Different from the harmonic testing in the PMU Standard (C37.118.1-2011 and C37.118.1a-2014)

- Fundamental frequency is not equal to nominal frequency;
- Multiple-harmonics are added, not only individual harmonics;
- Harmonic levels are determined by practical measurements.

Phasor measurement accuracy under harmonic conditions

Different from the harmonic testing in the PMU Standard (C37.118.1-2011 and C37.118.1a-2014)

- Fundamental frequency is not equal to nominal frequency;
- Multiple-harmonics are added, not only individual harmonics;
- Harmonic levels are determined by practical measurements.

Explanation

- Filters for different reporting rate have similar harmonics reduction performance.
- > The attenuation of one filter to different harmonics is close to each other.

Decoupled algorithm

- Pre-processing: digital filter to filter the noise in time domain
- Post-processing: digital filter to reduce the errors caused by harmonics in phasor domain (*The filter is a multiple*steps filter to improve dynamic measurement performance)

 Implement of the errors caused

 Implement of the errors caused

Decoupled algorithm^[2] vs PMU algorithm

[2] Lingwei Zhan, et al., "Dynamic Single-Phase Synchronized Phase and Frequency Estimation at the Distribution Level," Smart Grid, IEEE Transactions on , vol. PP, no.99, pp.1,1 TENNESSEE CT COAK TENNESSEE CT COAK

ational Laboratory

Conclusions

- The noise rejection performance decreases with the increase of reporting rate.
- PMU filter window has worst noise rejection performance.
- PMU filter windows for different reporting rates have similar harmonics rejection performance.
- The effect of noise and harmonics on measurement accuracy needs to be considered for phasor measurement algorithm, particularly at the distribution level.
- A decoupled algorithm was proposed to improve phasor measurement accuracy at the distribution level.

Acknowledgements

 This work was supported primarily by the Engineering Research Center Program of the National Science Foundation and the Department of Energy under NSF Award Number EEC-1041877 and the CURENT Industry Partnership Program.

