PG&E Synchrophasor Project Communication and Data Quality of Issues

Vahid Madani October 18, 2012 NASPI, Atlanta, GA

PG&E's High-Level Synchrophasor Project Goals

- Evolutionary improvement to the grid monitoring and control process through introduction of time synchronized measurements into the Energy Management Systems (Enhanced EMS)
- 2. Use of synchrophasors for daily functions, to add to the tools already available for managing operations.
- 3. Take a sustainable path to train and familiarize all potential users of the system and deploy advanced applications as they become available.
- 4. To enable system users to enhance and shape the future of PG&E's system operation, monitoring, protection, and control.
- 5. Provide interfaces with Remedial Action Scheme (RAS) system and with third parties
- 6. To enable future value added function through demonstration of reliable performance of the function.

System Performance

- Function/Application-based requirements for availability and performance.
 - First establish requirements for the functions deployed or envisioned to be deployed in the future (as part of a sustainable roadmap)
 - Next function/application requirements are flowed-down to system functional requirements
 - The system is next designed to meet its functional requirements
- Summary of application to be deployed in the short-term
 - Situational Awareness, Visualization and Alarming for Electric Transmission Operators
 - Enhanced Energy Management Systems and State Estimation for current EMS users
 - Post-Disturbance Event Analysis for Planners and Engineers
 - Operator and Engineering Training, Enhanced Dispatch Training Simulator (DTS)
 - Cognitive Tasks and Human Performance Analysis
 - Provide interfaces with EMS and with third parties
 - Distributed State Estimation

Pacific Gas and Electric Compai

Phasor application classes - A Perspective Based on Real-Time "Phasor Taxonomy"

	Small Signal Stability <mark>- Class A</mark>	State Estimator Enhancement - Class B	Post Event Analysis - <mark>Class C</mark>	Visualization - <mark>Class D</mark>
Low Latency	\bigcirc	\bigcirc	\odot	0
Reliability Availability	\bigcirc	\bigcirc	\ominus	٥
Accuracy	\bigcirc	\bigcirc	\bigcirc	\odot
Time Align	\bigcirc	\bigcirc	\odot	\bigcirc
Message Rate	\bigcirc	O	\bigcirc	G

- ⊙ Not very important
- ⊖ Somewhat important
- \ominus Fairly important
- Critically important

Sample Application Requirements

Application Group	Overall Latency	Availability	Data rate (frames/s)	Fail-over Time
Visualization (Voltage, Current, Mag/Phase, Frequency, df/dt)	2 s	99.9%	1	1 s
Alarming	0.5 s	99.9%	2-4	1 s
Oscillation Monitoring	60 s	99%	60-120	30-60 s
Post-Event Disturbance Analysis	N/A	99.9%	30	N/A
EMS / State Estimation	30 s	99.95%	1	1-30 s
Stability Analysis	300 s	99%	30-120	5-300 s
Closed-loop Control	0.15 s	99.995%	60-120	0.1 s

Key System Architecture Drivers

- Application Requirements (present and future)
 - Availability (number and length of interruptions)
 - Latency
 - Data rates
- Cost vs. value
 - Geography
 - Available infrastructure
 - Cost versus value of redundancy
 - Redundancy at various levels (measurement device, data path, applications, ...)
- System maintainability issues
 - Down time
 - Time to repair
 - Established processes
- Cyber security requirements
- Corporate processes and history
 - Including regulatory requirements

Synchrophasor System Architecture - Simplified

Multi-host EMS & Wall Display Connection

Downtime based on percentage

System Architecture Summary – Operational Support

- Disaster Recovery Architecture similar to RAS
- Multi-host architecture for EMS related applications
 - Two locations, two systems per location
- 24/7 monitoring
- Redundant data archival system
- Redundant (different locations) non-EMS applications
- Independent data routing
- Using established PG&E maintenance and operation processes for real-time systems
- Cyber security designed into the system

