

Least costly probing signal design for power system mode estimation

Vedran S. Perić, Xavier Bombois, Luigi Vanfretti

KTH Royal Institute of Technology, Stockholm, Sweden

NASPI Meeting, March 23, 2015.

Outline

- Motivation
- Probing-based mode estimation
- Optimization problem formulation
- Results
- Conclusions
- Q&A

Algorithms for measurement based mode estimation

- Transient response:
 - Prony, ERA, Pencil Matrix
 - Well established
 - Good accuracy
 - Not suitable for real-time monitoring

- Ambient and probing :
 - SysID and signal processing algorithms
 - Suitable for real-time monitoring
 - Lower accuracy

Probing based mode estimation esla Inputs (load noise) **Power system Outputs** dx/dt=Ax+Bu+Fz(PMUs) y=Cx+Du+Gz Three Phases **Deterministic** signal **Probing signals** CENTRAL **FACTS** devices Measured AVR signals

Exactly known excitation brings new information that can be used for improved mode identification

400 kV 220 kV 130 kV

Turbine governors

Parameter covariance matrix

u(t) - designed input signal The goal is to identify the critical $G(\theta,z)$ damping ratio of G(z)The critical damping ratio is parameter of G(z) (element of θ) $H(\theta,z)$ e(t) **y(t)** random measured load signa $P_{\theta}^{-1} = \left(\frac{N}{\sigma^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F_u(\omega, \theta_0) F_u^*(\omega, \theta_0) \Phi_u(\omega) \Phi_u(\omega)$

How should the probing signal look like ???

- 1) Length
- 2) Frequency spectrum
- Time domain

Spectrum calculation

Requirements :

1) Control effort 2) System disturbance 3) Accuracy

Opt. criterion:
$$\min_{u(t)} J = \left(\frac{k_1}{2\pi} \int_{-\pi}^{\pi} \Phi_u(\omega) d\omega\right) + \left(\frac{k_2}{2\pi} \int_{-\pi}^{\pi} |G(s)|^2 \Phi_u(\omega) d\omega\right)$$
Input Output (frequency deviation)

Constraint: $var(\zeta_i) = e_i^T P_{\theta} e_i < r$ r - tolerance

Keeping in mind:

$$P_{\theta}^{-1} = \left(\frac{N}{\sigma^2} \frac{1}{2\pi} \int_{-\pi}^{\pi} F_u(\omega, \theta_0) F_u^*(\omega, \theta_0) \Phi_u(\omega) d\omega\right) + \left(\frac{N}{2\pi} \int_{-\pi}^{\pi} F_e(\omega, \theta_0) F_e^*(\omega, \theta_0) d\omega\right)$$

Global algorithm (two steps)

- Spectrum calculation (LMI optimization)
- Time domain signal realization
 - FIR filter
 - Sample autocorrelation optimization
 - Multi-sine input signal [1]

[1] J.W. Pierre, et al. "Probing signal design for power system identification", *IEEE Trans. Power Syst.*, vol.25, no.2, pp.835-843, May 2010.

Signal realization with constrained magnitude

r = -m

- Power spectrum $\Phi_u(\omega) = \sum_{r}^{m} c_r e^{j\omega r}$
- Sample autocorrelation

$$ACF_{k}(\tau) = \frac{1}{k} \sum_{i=\tau+1}^{k} u(i)u(i-\tau)$$

Optimization

 $\min_{u(k)}\sum_{\tau=0}^{M+K} \left(ACF_k(\tau) - ACF_{des}(\tau)\right)^2$

- Efficient recursive algorithm
 - Sample by sample
 - Every sample result of a simple optimization problem

Optimal probing signal design results

	Input spectrum parameterization		
	White noise	Multi-sine	FIR filter
var{u(t)}	10 410.00	1 441.58	1 933.55
var{y(t)}	1.67	1.59	1.55
var{uy(t)}	6 881.10	2 318.81	2 518.24

Optimal probing allows us to reduce probing power and/or system disturbance while maintaining desired accuracy

Conclusions

- Monitoring of electromechanical modes is important
- Staged probing tests can provide a good accuracy
- Shape of the probing signal affects estimation accuracy
- Several considerations can be taken into account during design process
- Optimal probing allows us to reduce probing power and/or system disturbance while maintaining accuracy
- The proposed method is easy to implement

Thank you!

Questions?

Vedran Perić email:vperic@kth.se

