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Oscillation monitoring 

 
PMU Data 
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Oscillations if lightly damped can lead to a system black-out 

Oscillations occupy transmission capacities and increase losses 

February 19th 2011 – North-South Inter-Area Oscillation 

Frequency and damping ratio monitoring 



Algorithms for measurement based 
mode estimation 

Transient response 
analysis 

Mode estimation using measured signals 

Ambient 
analysis Probing 

• Ambient and probing : 
• SysID and signal processing algorithms 
• Suitable for real-time monitoring 
• Lower accuracy 
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• Transient response: 
• Prony, ERA, Pencil Matrix 
• Well established 
• Good accuracy 
• Not suitable for real-time 

monitoring 



Probing based mode estimation 
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Power system 
dx/dt=Ax+Bu+Fz 

y=Cx+Du+Gz 

Inputs  
(load noise) 

Outputs 
(PMUs) 

Measured 
signals 

Deterministic 
signal 

Exactly known excitation brings new information  
that can be used for improved mode identification 

Probing signals 

FACTS devices 
AVR 

Turbine governors 

dx/dt=Ax+Bu+Fz 
y=Cx+Du+Gz 



• In case of probing, the model is: 
 

• Mode estimation as an optimization problem 
 

Mathematical description of the  
probing-based mode estimation 
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 ARMAX 
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• Model of the system 
 



Parameter covariance matrix 

• The goal is to identify the critical 
damping ratio of G(z)  

• The critical damping ratio is 
parameter of G(z) (element of θ) 
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How should the probing signal look like ???  
1) Length 
2) Frequency spectrum 
3) Time domain 



Spectrum calculation 

1) Control effort       2) System disturbance     3) Accuracy 
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Opt. criterion:  π π
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Keeping in mind: 

Input Output (frequency deviation) 

Requirements :  



Global algorithm (two steps) 

• Spectrum calculation (LMI optimization) 
• Time domain signal realization 

– FIR filter 
– Sample autocorrelation optimization 
– Multi-sine input signal [1] 
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LMI

Signal realization

max var(ζ)

Multisine

ACF (rd)

min(upeak
2/urms

2)

FIR filter

min(║ r-rd║2)

white noise - e(t)
u(t)

u(t)

u(t)

Probing Φu(ω) calculation

[1] J.W. Pierre, et al. “Probing signal design for power system identification”,  
IEEE Trans. Power Syst., vol.25, no.2, pp.835-843, May 2010. 



Signal realization with constrained 
magnitude 

• Power spectrum 
•  Sample autocorrelation 

 
 

• Optimization 
 

 

• Efficient recursive algorithm 
– Sample by sample 
– Every sample result of a simple 

optimization problem 
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Optimal probing signal design results 
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Minimized input Minimized output 

0 0.5 1 1.5 2 2.5
0

5000

10000

15000

Frequency [Hz]

Po
we

r s
pe

ctr
um

 

 

0 0.5 1 1.5 2 2.5
0

1

2

3

4 x 105

Frequency [Hz]

Po
w

er
 sp

ec
tru

m

 

 

  Input spectrum parameterization  
White noise                     Multi-sine                   FIR filter 

var{u(t)}  10 410.00 1 441.58 1 933.55 
var{y(t)} 1.67 1.59 1.55 
var{uy(t)} 6 881.10 2 318.81 2 518.24 

Optimal probing allows us to reduce probing power and/or 
system disturbance while maintaining desired accuracy 



Conclusions 

• Monitoring of electromechanical modes is important 
• Staged probing tests can provide a good accuracy 
• Shape of the probing signal affects estimation accuracy  
• Several considerations can be taken into account during 

design process 
• Optimal probing allows us to reduce probing power 

and/or system disturbance while maintaining accuracy 
• The proposed method is easy to implement 
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Thank you! 

Questions? 
 

 

Vedran Perić 
email:vperic@kth.se 
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