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Motivation

= Transient stability i1s key in many current
analyses, and is being proposed to
replace steady state contingency analysis Balance of System

— Operations: accurate dynamic models will be
needed that reflect the current grid state In
real time so operators can perform
appropriate controls to ensure grid stability

— Planning: fast models needed to reduce
computation time and allow case studies with
more dimensions

= Load models have traditionally been

neglected

= Many dynamic studies attribute
uncertainty of their solutions to load 2

generation load

Source: wikipedia
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Measurement-based load modeling

= (Goal: accurate dynamic load models for transient stability
studies

* |ncreasing interests in a measurement-based load modeling
framework

* Thanks to wide deployment of PMUs and other DFRs, it is
possible to fit the recorded fault data to parameterized dynamic
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Challenges

= |Loads cannot be separately tested and have to be determined
while on-line

= EXisting aggregated load models are complicated and highly
non-linear

— Include diverse components, such as transformers, power electronics,
and motors

— account for switching events

= Difficult to validate the results as loads are constantly changing

= Qur contributions: develop the analytical framework to address

the adequacy or necessity of existing dynamic load models ~ *
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Complexity analysis

= Extremely large number of parameters; 100 + for the WECC
CMPLDW

= Some parameters more significantly affect dynamic responses
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Simpler CLOD model

= Parameters: percentage ) ,
level of ,,-| ,f-Jﬁ | l | l,f m[_m 'np
— Large Motors (LM) :; ;f mrg: Mf_m‘; - ::;12
— Small Motors (SM) e e R e e
— Discharge Lighting (DL)
— Transformer Saturation (TS) 1100
— Voltage-dependent Loads 1050 .
VL 1.000
( ) . 0.950 /-’/
8 0.900
= Use PowerWorld generator 2,
playback function to input 2 s
real voltage data recorded =~ o7

during FIDVR disturbances  °™ 75 1 5 31 1 5 5.7 5 6 0112 1e s

Time (seconds)
6
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Sparse principal component analysis (S-PCA)

= Without sparsity, PCA is related to SVD matrix decomposition

= Sparsity is advocated to further explore hidden data

structure/redundancy for noisy measurements or missing data
T

A= U. W .V
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Preliminary studies

= Both real and reactive power mismatch matrices are almost of
rank 1

= The first principal component for Pmat is
[0.7020, 0.7122, 0.0000, 0.0000]

— Only changes of LM or SM would affect dynamic response
— Itis the aggregated LM and SM percentages would matter

= The first two principal components for Qmat are
[0.6212, 0.7627, -0.1800, 0.0000]
[0.6886,-0.4216, 0.5900, 0.0000]

— Q response would depend on DL percentage
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Conclusions

Load models are crucial for accurate transient stability studies

PMUSs provide high resolution for measurement-based load

models, but it is important to first understand the adequacy or
redundancy of models itself

— Preliminary studies point out parameter identifiability issues

— (Sparse) PCA method offers the analytical solution to characterize this
effect

= Ongoing work
— Test Sparse PCA for the WECC load model
— Characterize the dependence on loading conditions

— Leverage the complexity analysis results to facilitate load estimation in
real time
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