Use of PMU Data for Geomagnetic Disturbance Model Validation

Maryam Kazerooni, Trevor Hutchins, Tom Overbye and Hao Zhu

University of Illinois at Urbana-Champaign Emails: {kazeron2,hutchns2,overbye,haozhu}@illinois.edu





#### Introduction

 Solar storms disturb the Earth's magnetic field.



 Change of magnetic field induces electric field.



 Geomagnetic induced currents (GICs) flow through the lines.



- GICs are DC Currents.
- GICs have negative impacts on the network.

#### **Half-cycle saturation of Transformers**



- The GICs cause halfcycle saturation of transformers.
- Reactive power loss is increased due to high magnetizing current and harmonics.
- Modeling the reactive power during GMDs is very important.

#### **GIC-Saturated Reactive Power Loss**

GIC-saturated reactive power loss is linearly related to the GIC at transformer neutral.

$$Q_{GIC} = KV_{HV}I_{GIC}$$



X. Dong, Y. Liu, J. G. Kappenman, "Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers", 2001.

#### EXAMPLE OF K VALUES FOR DIFFERENT CORE TYPES

| Core Type                      | K Value |
|--------------------------------|---------|
| Single Phase                   | 1.8     |
| Three Phase, Shell Form        | 1.45    |
| Three Phase, Core From Generic | 1.5     |
| Three Phase, 5-Legged          | 1.5     |
| Three Phase, 7-Legged          | 1.2     |



#### **GIC-Saturated Reactive Power Loss**



GIC-saturated reactive power loss is linearly related to the GIC at transformer neutral.

$$Q_{GIC} = KV_{HV}I_{GIC}$$

X. Dong, Y. Liu, J. G. Kappenman, "Comparative analysis of exciting current harmonics and reactive power consumption from GIC saturated transformers", 2001.

#### EXAMPLE OF K VALUES FOR DIFFERENT CORE TYPES

| Core Type                      | K Value |
|--------------------------------|---------|
| Single Phase                   | 1.8     |
| Three Phase, Shell Form        | 1.45    |
| Three Phase, Core From Generic | 1.5     |
| Three Phase, 5-Legged          | 1.5     |
| Three Phase, 7-Legged          | 1.2     |



Maryam Kazerooni

Use of PMU data for GMD Model Validation

#### **Estimating the Transformer Mvar Parameter**



$$Q_{loss} = Q_1 - Q_2 = Q_{loss,Normal} + Q_{GIC}$$

$$\implies \underbrace{Q_1 - Q_2 - l_2^2 X_s}_{y} = K \underbrace{V_1 l_{GIC}}_{x} \qquad y$$
We have PMU
that a over time
$$t_1 \quad t_2 \quad t_3 \qquad t_{k-1} \quad t_k$$

$$y$$

$$X$$

Maryam Kazerooni

NO

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Use of PMU data for GMD Model Validation

## Per Unit GIC Q Approach

NO

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

S

Per unit system for GICs:  

$$I_{base,HV} = \frac{S_{base}}{\sqrt{3}V_{HV,Nominal}}$$

$$I_{GIC,pu} = \frac{I_{GIC}}{I_{base,HV}}$$

$$Q_{GIC,pu} = \frac{Q_{GIC}}{S_{base}} = V_{pu} K I_{GIC,pu}$$

$$(K_{pu} = 1.154 K_{Old})$$
We need P, Q, and V to calculate the current at low voltage side of the transformer:  

$$I_{2} = \frac{\sqrt{P_{2}^{2} + Q_{2}^{2}}}{V_{2}}$$
The required fields for estimating K are:  

$$I_{2} = \frac{\sqrt{P_{2}^{2} + Q_{2}^{2}}}{V_{2}}$$

I<sub>GIC</sub>

## **Simulation Setup**

NIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

- A geomagnetic storm is enforced to the 20-bus test case [Horton et al., 2012] and the response of the system is monitored.
- Synthetic PMU data is generated using the transient stability toolbox. The data contains P, Q and V at all busses with frequency of 60Hz.
- Synthetic GIC data is generated using the GIC add on.
- Gaussian noise with signal-to-noise ratio (SNR) of 20 is added to all measurements.



#### **Reactive Power Estimation**



The actual GIC-saturated reactive power ( $Q_{GIC}$ ) as compared with the one obtained from PMU data.



#### **K Value Estimation**



The variation of the GIC-saturated reactive power with respect to the GIC (The slope is used to estimate K).



## **Two Segmented Model**



- A Two segmented model may be used to relate GICs to reactive power loss.
- Piecewise linear regression techniques are used to estimate K<sub>1</sub> and K<sub>2</sub>.



- The break point current is .038 and is assumed to be given to the estimator.
- K<sub>1</sub> and K<sub>2</sub> are estimated with high accuracy.



## **K Value Estimation**

| Transformer<br>ID  | Actual | Estimated | Error (%) |  |
|--------------------|--------|-----------|-----------|--|
| 1                  | 1.18   | -         | -         |  |
| 2                  | 1.75   | 1.71      | 2.49      |  |
| 3                  | 1.75   | 1.7       | 2.79      |  |
| 4                  | 1.75   | 1.71      | 2.1       |  |
| 5                  | 1.75   | 1.69      | 3.23      |  |
| 6                  | 1.63   | 1.62      | 1.05      |  |
| 7                  | 1.63   | 1.61      | 1.35      |  |
| 8                  | 0.82   | 0.81      | 0.75      |  |
| 9                  | 0.82   | 0.81      | 0.87      |  |
| 10                 | 0.82   | 0.8       | 1.52      |  |
| 11                 | 0.82   | 0.8       | 2.06      |  |
| 12                 | 1.14   | 1.13      | 0.85      |  |
| 13                 | 1.14   | 1.13      | 1.58      |  |
| 14                 | 1.18   | 1.18      | 0.05      |  |
| 15                 | 1.18   | 1.17      | 1.37      |  |
| Maximum Error < 4% |        |           |           |  |





Use of PMU data for GMD Model Validation

## **Effect of K Value on Voltage**

#### All transformers have K value of 1.8



#### All transformers have K value of 0.9

ΙΝΟΙ

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

S







- Modeling of the transformers reactive power loss during geomagnetic disturbances is presented.
- PMU data is used to estimate the transformer parameters.
- The effectiveness of the proposed estimation technique is validated through simulation using a 20-bus test case.

#### **Future Work**

- Use actual PMU data for real systems instead of the synthetic data for a test case.
- Explore the possibility of using the PMU data at only one side of the transformer for estimating its parameters.



# Thank You

## **Questions & Comments**

Maryam Kazerooni, kazeron2@illinois.edu