GRID PERFORMANCE ASSESSMENT USING SYNCHROPHASOR DATA ANALYTICS

Presentation for NASPI Workgroup Meeting Salt Lake City

NASPI – NERC Synchrophasor Data Analytics Workshop

Neeraj Nayak (EPG)

April 17, 2024

OUTLINE

- Introduction
- Use Cases from Utilities and Grid Operators
 - □ IBR Performance Assessment
 - Oscillations Natural Modes, Forced Oscillations
 - □ Frequency Response and Inertia Assessment
 - □ Equipment Failure and Device Issues
- Data Analytics Tools
- Value of Synchrophasor Data Analytics

Why Synchrophasor Data Analytics?

- Large deployment of PMUs
- Utilities, ISOs and RCs have Terabytes of Synchrophasor data being archived
- High-resolution (30 frames/second or higher) and time-synchronized data from PMUs provides unprecedented visibility into grid dynamics
- Need for PMU Data Analysis
 - Extract value from large archives to guide planning and operations
 - Assess Grid Performance
 - How Many Events: Where, When, How Severe?
 - Identify weak spots in the grid to guide capital investments and update operating procedures
 - Identify indicators of potential equipment failure and device malfunctions
 - Validate and Set Alarm Thresholds for Real-Time Operations

USE CASE EXAMPLES

Frequency Response and Inertia

-122.45 -142.4 egree 11:25:00 11:30:00 11:35:00 11:40:00 11:45:00 11:50:00 11:55:00 1 hour

Potential Transformer (PT) Failure

IBR PERFORMANCE ASSESSMENT

FORCED OSCILLATIONS

- Identify Issues in the Grid
- **Unknown Forced Oscillations**
 - Power Plants
 - IBRs
 - **Equipment Failure**
- Identify Weak/Spots for Monitoring in Real-time
- Identify oscillations that may have impact on system reliability
- Identify Oscillation Source
 - **Dissipating Energy Flows**
 - Harmonics Assessment

Oscillation Results by Location

NATURAL SYSTEM MODES

- Identify Natural System Modes
- Characterize Modes
 - Frequency
 - Oscillation
 - Damping
 - □ Shape
 - Participating Signals
- Track Dynamics with Time Changing Topology, Resource Mix, IBR Penetration
- Identify low damping/high energy time periods

Ringdown Analysis - Response to Grid Disturbances

FREQUENCY RESPONSE AND INERTIA ASSESSMENT

Frequency Response Frequency Response ▼ Х — Frequency 60.050 60.000 59.950 59.900 Frequen 59.850 59.800 59.750 59.700 19:43:00 19:44:00 19:45:00 19:47:00 19:48:00 19:50:00 19:51:00 19:42:00 19:46:00 19:49:00 Start Time: 2013-11-01 19:42:00.000 End Time: 2013-11-0 Inertia Ψ× Inertia Estimation 4.22 Value 4.20 4,18 19:47:25 19:47:30 19:47:35 19:47:40

EQUIPMENT FAILURE AND DEVICE ISSUES

Source: Jonathan Sides, TVA, April 2024

Device (PT, CCVT) Calibration Issue

PMU level		Signal Level	
	Data Invalid	•	Out of Range
	GPS Out of Synch	•	Stale
	PMU Error	•	NaN
	Sort by Arrival	•	Data Invalid
	Drop Out	•	GPS Out of Synch
	Missing Data	•	PMU Error
	Data Valid	•	Sort by Arrival
		•	Drop Out
		•	Missing Data
		•	Data Valid

DATA ANALYTICS TOOLS AND METHODOLOGY

Automated Event Miner (AEM)

Phasor Grid Dynamics Analyzer (PGDA)

PMUs, DFRs, Point-on-wave, Simulations, SCADA

- Automated Process to mine through large amounts of Synchrophasor data for Grid Performance Assessment
- Integrated Platform for Detailed Analysis and Root Cause Diagnostics
- Automated Reports By Location, Time, Severity

BENEFITS OF SYNCHROPHASOR DATA ANALYTICS

Planning & Operation Management

- System dynamic performance assessment
- □ Identify emerging problem areas that threaten reliability
- Actionable Information to guide goals and programs

Operations Support & Analysis

- Assessment of Events using multiple perspectives such as time-of-day, season, severity, etc.
- Identification and Analysis of Oscillations for improved monitoring and mitigation
- Event Library for Training
- Planning & Modeling
 - □ Identify Weak Spots in the system to guide capital investments
 - Support Model Validation using PMU data
- PMU Engineering
 - □ Verify Event detection and Alarm operation, fine tune Alarm thresholds
 - □ Identify unreliable Equipment and measurement system problem areas

Extract Value from large archives of Synchrophasor data to guide planning and operations

Q&A, DISCUSSION

Thank you!

nayak@electricpowergroup.com

251 S. Lake Ave., Ste. 300 Pasadena, CA 91101 626-685-2015

