

PMU Data-Based Big Data Analytics and Its Deployment Using MATLAB

Mil Shastri

Senior Application Engineer - Energy and Automation

© 2024 The MathWorks, Inc.

Agenda

- Introduction
- Big Data Synchro-phasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB under DOE FOA 1861
- Big-data in MATLAB
- Deployment options
- Other relevant work

Agenda

Introduction

- Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB
- Big-data in MATLAB
- Deployment options
- Other relevant work

6000+ staff

in 34 offices around the world

\$1.65+ billion

in revenues

Privately held

and profitable every year

"fleet" data requires efficiently storing and processing huge timeseries datasets.

Vehicles

Automotive

- Engines
- Controllers

Manufacturing

- Pick & Place machines
- Welding robots
- Material handling systems

Energy

- Wind Turbines
- Solar Panels
- Generators

Agriculture

- Harvesters
- Tractors
- Mining

Healthcare

- Surgical tools
- Wearables
- Digital health equipment

Infrastructure

- Charging stations
- Parking spaces
- Electronic toll collection

Agenda

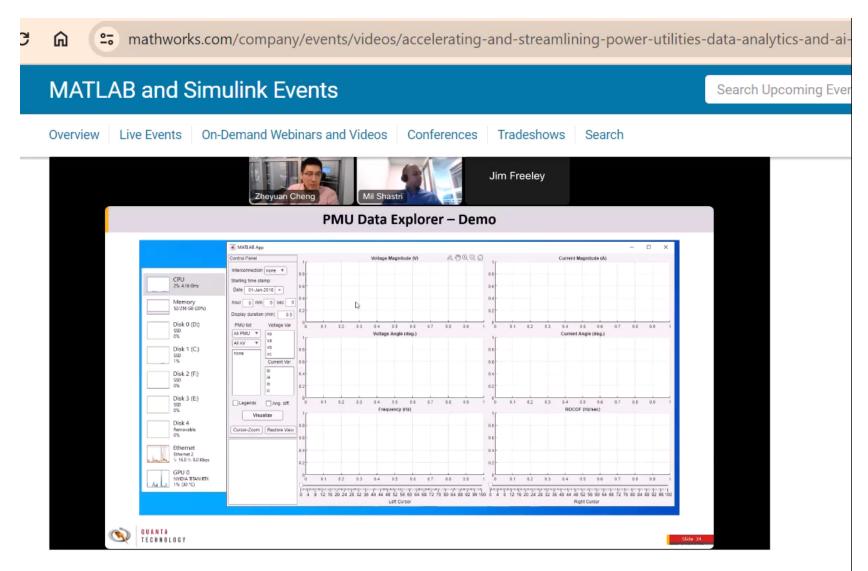
Introduction

- Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB
- Big-data in MATLAB
- Deployment options
- Other relevant work

Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)

FOA 1861 Awards

Performer	Team Members	
Iowa State	Electric Power Group (EPG), Google Brain, IBM	Robust Learning of Dynamic Interactions for Enhancing Power System Resilience
SEL	Oregon State University	Machine Learning Guided Operational Intelligence from Synchrophasors
University of California Riverside	EPG, Michigan Technological University	Discovery of Signatures, Anomalies, and Precursors in Synchrophasor Data with Matrix Profile and Deep Recurrent Neural Networks
University of Nevada, Reno	Arizona State University (ASU), IBM, Virginia Tech	Robust Event Diagnostics Platform: Integrating Tensor Analytics and Machine Learning Into Real-time Grid Monitoring
GE	GE Grid Solutions	PMU-Based Data Analytics using Digital Twin and PhasorAnalytics Software
Siemens	Southern Methodist University, Temple University	MindSynchro
Ping Things	NA	Combinatorial Evaluation of Physical Feature Engineering and Deep Temporal Modeling for Synchrophasor Data at Scale
Texas A&M	Temple University, Quanta Technology	Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)


DOE FOA 1861

- Challenges:
 - Large data: 27 TB, 1 GB each file from 3 interconnections
 - Data quality issues: missing, oversampled, abnormal
- Approach Quanta Technology used:
 - Preprocess data:
 - Fragmenting data
 - File naming scheme
 - Indexing: monthly, weekly, daily
 - Distributed storage
 - Parallelize
 - Parfor on 64 cores

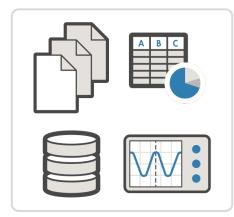
Accelerating and Streamlining Power Utilities Data Analytics and AI Workflows at Quanta Technology

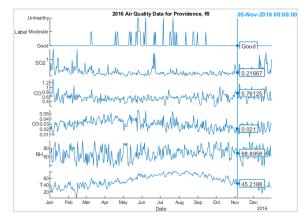
Accelerating and Streamlining Power Utilities Data Analytics and AI Workflows at Quanta Technology Other results:

- Process 27 TB of data within hours
- Event detection algorithm using a random forest classifier

Source: URL

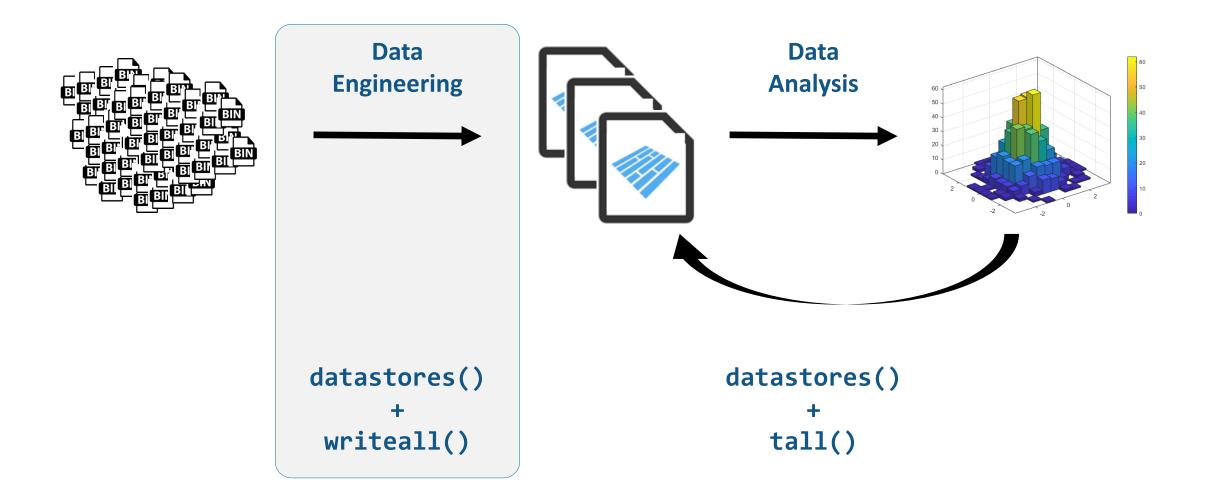
Agenda


- Introduction
- Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB
- Big-data in MATLAB
- Deployment options
- Other relevant work


Performing big-data analytics in MATLAB

Performing big-data analytics in MATLAB

Access & Analysis


Visualization

topkrows summary of grpstats movmedian polyval calendarDuration splitapply polyval crosstab timetable polyfit eraseBetween retime bounds categorical binscatter to the bounds duration logical binscatter to the between gather pic scatter poor between gather pie complex of the between gather movprod synchronize movmean rmmissing contains discretize ksdensity histogram string

Big Data

Big Data Engineering and Analysis

Simplify data engineering workflows with datastore and writeall

Current Folder				
=		da	ata_nested	Folder
	÷		200502	Folder
	÷		200503	Folder
	Ξ		200504	Folder
			20050401pal.csv	Microsoft Ex
			20050402pal.csv	Microsoft Ex
			20050403pal.csv	Microsoft Ex

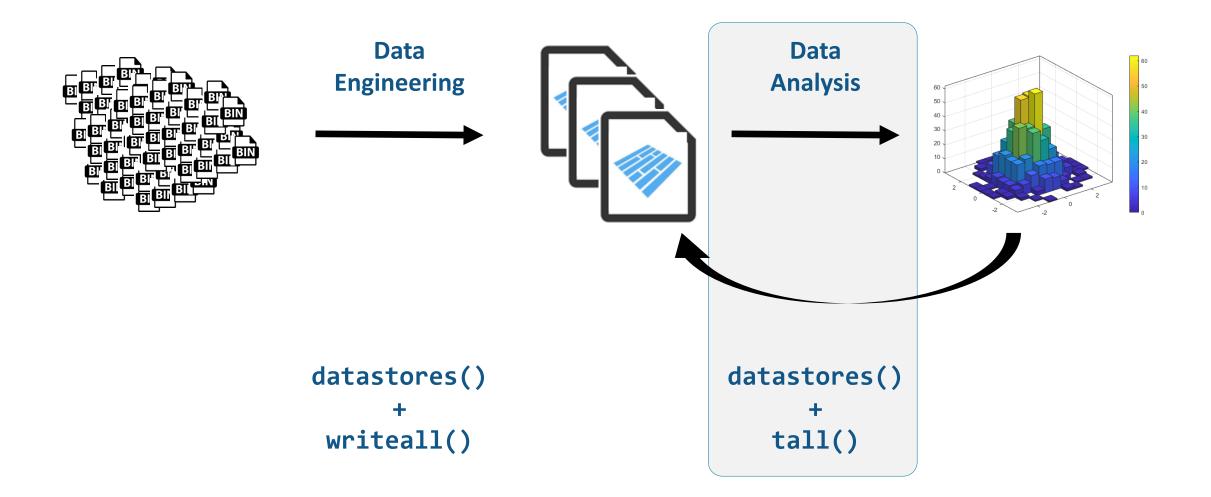
```
ds = datastore("data_nested\","OutputType","timetable",...
    "IncludeSubfolders",true);
tds = transform(ds,@myfcn);
writeall(tds,"data_writeall1\","OutputFormat","csv",...
    "FolderLayout","duplicate","UseParallel",true)
```

```
function t_out = myfcn(t_in)
    tu = unstack(t_in,"Load","Name");
    t_out = retime(tu,"hourly");
end
```


Efficient and performant big data storage with Parquet files

- parquetread, parquetwrite, and parquetinfo for single files
- parquetDatastore and writeall for large collections of files
- rowfilter object allows filtering of data at read-time

Determine and define row groups


 Convert, import, and export nested data structures

	R 2021 b :	30 sa
<pre>data = parquetread(filename); data = data(data.pickup_datetime >= "2012-03-10" & data.pickup_datetime < " head(data)</pre>	2012-03-11",	:);

	R 2022 a :	0.3sa
<pre>filter = rowfilter("pickup_datetime"); filter = filter.pickup_datetime >= "2012-03-10" & filter.pickup_datetime <</pre>	"2012-03-11"	
<pre>filter = RowFilter with constraints:</pre>		
pickup_datetime >= 2012-03-10 & pickup_datetime < 2012-03-11		
VariableNames: pickup_datetime		
<pre>data = parquetread(filename, RowFilter=filter); head(data)</pre>		

Big Data Engineering and Analysis

tall Arrays

- Data type designed for data that doesn't fit into memory
- Lots of observations (hence "tall")
- Lazy evaluation only performs the necessary computations when needed
- Looks like a normal MATLAB array
 - Supports numeric types, tables, datetimes, strings, etc...
 - Supports several hundred functions for basic math, stats, indexing, etc.
 - Statistics and Machine Learning Toolbox support
 - Logical indexing with parquetDatastore uses rowfilter automatically R2022b

Big Data Analysis Without Big Changes

One file

Access Data

```
measured = readtable('PumpData.csv');
measured = table2timetable(measured);
```

Preprocess Data

Select data of interest

measured = measured(timerange(seconds(1), seconds(2)), 'Speed')

Work with missing data

measured = fillmissing(measured, 'linear');

Calculate statistics

m = mean(measured.Speed);

s = std(measured.Speed);

One hundred files

Access Data

measured = datastore('PumpData*.csv');
measured = tall(measured);

measured = table2timetable(measured);

Preprocess Data

Select data of interest

measured = measured(timerange(seconds(1), seconds(2)), 'Speed')

Work with missing data

measured = fillmissing(measured, 'linear');

Calculate statistics

m = mean(measured.Speed);

s = std(measured.Speed);

[m,s] = gather(m,s);

Customization support for the entire big data workflow

Import

Custom datastore

Process

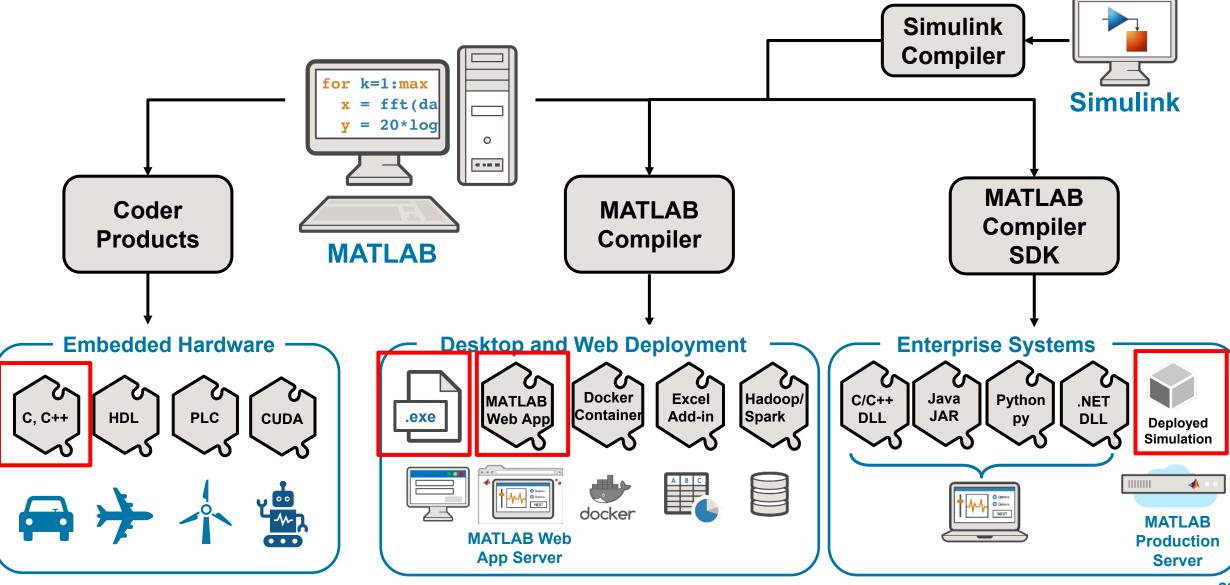
- Custom datastore transforms
- Custom tall array functions

```
tall_output1 = matlab.tall.transform(@fcn, tall_input);
tall_output2 = matlab.tall.reduce(@fcn, @reducefcn, tall_input);
tall_output3 = matlab.tall.movingWindow(@movefcn, windowSize, tall_input);
```

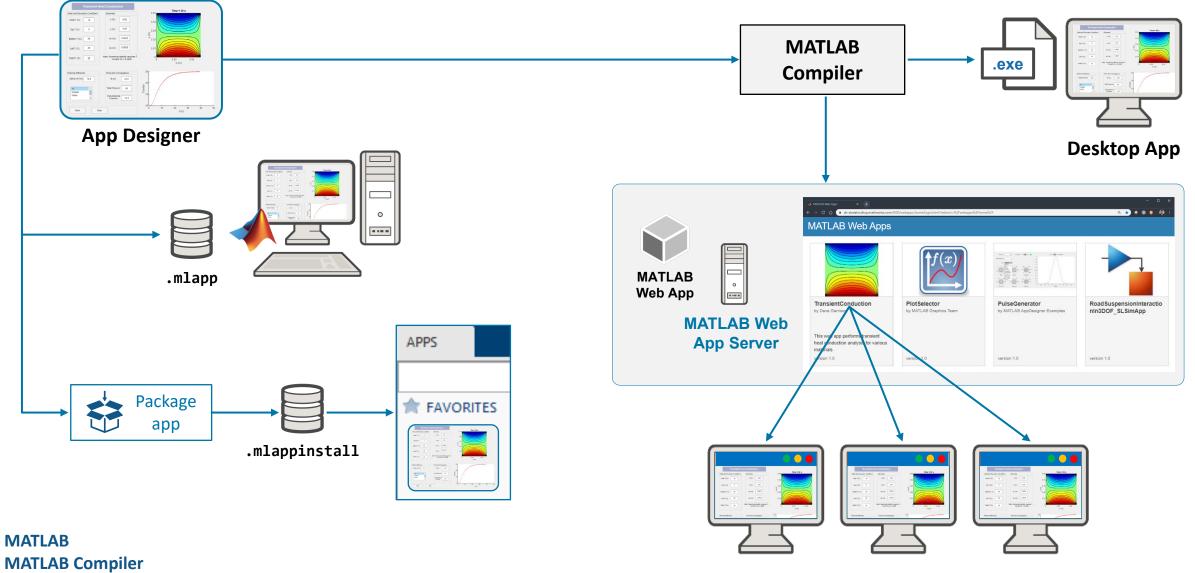
- Export

Custom write capabilities for both datastore writeall and tall write

```
write("OutputFolder", tt, "FileType", "text");
write("OutputFolder", tt, "FileType", "parquet");
write("OutputFolder", tt, "WriteFcn", @myWriteFcn);
```

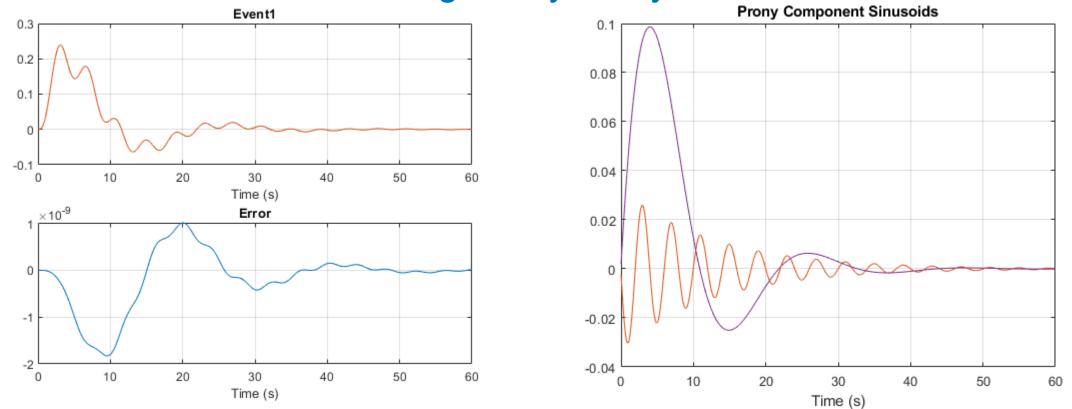


Agenda

- Introduction
- Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB
- Big-data in MATLAB
- Deployment options
- Other relevant work


Power Utility Monitoring and System Deployment

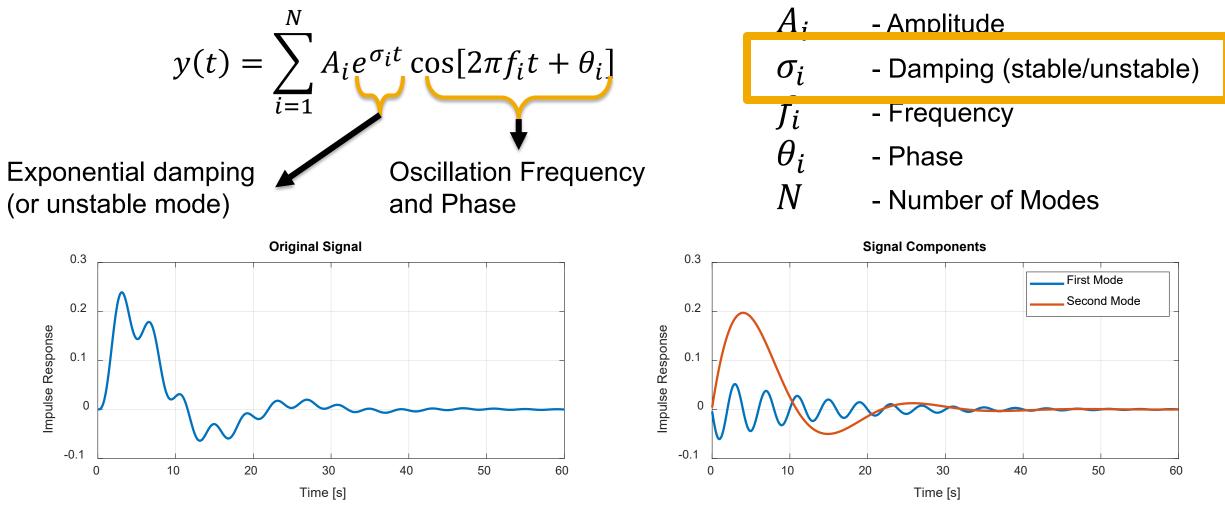
MathWorks workflows can integrate with different platforms:

Sharing desktop and web apps

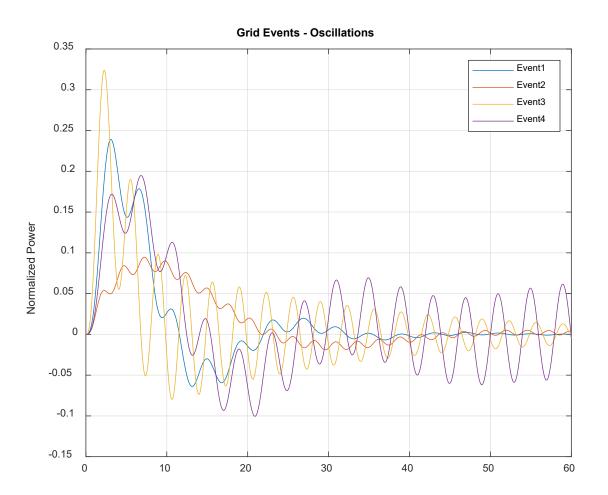

MATLAB Web App Server

Example

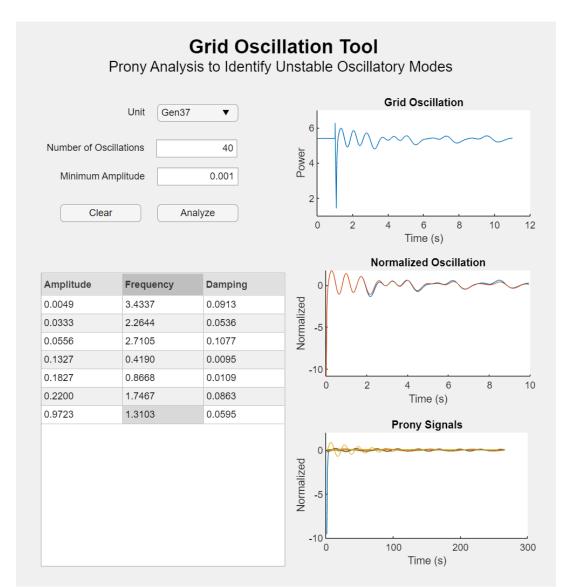
Deployment Example: Event Characterization using Prony Analysis in MATLAB



	Location	tion FrequencyHz DampingRat	
1	"Event1"	0.0500	0.4000
2	"Event1"	0.2500	0.0500


Oscillation Signal Reconstruction with Simple Sinusoids

Oscillation can be reconstructed with a series of exponential responses and sinusoids:


Multi-Event Identification of Damping

Signal Number	Frequency (Hz)	Damping Ratio
Event1	0.050	0.400
Event1	0.250	0.050
Event2	0.025	0.500
Event2	0.380	0.010
Event3	0.076	0.800
Event3	0.300	0.020
Event4	0 038	0.300
Event4	0.250	-0.005

MathWorks[®]

MATLAB example: Web-app

Command-Line Automation without MATLAB Installed Enable Connection to Other Tools/Workflows

Command Prompt	—	×
Microsoft Windows [Version 10.0.18362.1198] (c) 2019 Microsoft Corporation. All rights reserved.		^
C:\Users\jlesage>cd C:\Temp\PronyExe		
C:\Temp\PronyExe>dir Volume in drive C is Windows Volume Serial Number is 5295-25EC		
Directory of C:\Temp\PronyExe		
11/19/2020 10:49 AM <dir> . 11/19/2020 10:49 AM <dir> . 11/02/2019 03:11 PM 38,368 IEEE39_Oscillations.xlsx 11/02/2020 10:47 AM 3,762,588 pronyAnalysis.exe 2 File(s) 3,800,956 bytes 2 Dir(s) 25,183,252,480 bytes free</dir></dir>		
C:\Temp\PronyExe>pronyAnalysis.exe IEEE39_Oscillations.xlsx		
C:\Temp\PronyExe>type myResults.csv Location,FrequencyHz,DampingRatio Gen30,1.83379577535666,0.129683589572221 Gen30,1.83379577535666,0.129683589572221 Gen30,1.15256223723627,0.181856361593631 Gen30,0.864082530271451,0.140266805985523 Gen30,0.864082530271451,0.140266805985523 Gen30,0.40286280635301,0.0192430137395219 Gen30,0.40286280635301,0.0192430137395219		~

Agenda

- Introduction
- Big Data Synchrophasor Monitoring and Analytics for Resiliency Tracking (BDSMART)
 - Work by Quanta Technologies LLC using MATLAB
- Big-data in MATLAB
- Deployment options
- Other relevant work

Other resources on Electrification

Motor Drives and Traction **Electric Vehicles and Renewable Energy and** D---D 各 5 11 Energy Storage D-i-O Transportation Motors Develop embedded software for Perform grid-scale integration studies, develop wind and solar motor-inverter systems farm architecture and control systems **Battery Systems** Microgrid, Smart Grid, and **Fuel Cells and** Chanki - 13 Charging Infrastructure Electrolyzers Design battery packs and develop Develop network architecture and battery management systems perform system-level and control system design of power system in hydrogen systems infrastructure Generation, Transmission, **Building Energy** Power Conversion _≈ Ø n și and Distribution Management Develop embedded software for high, medium, and low power Conduct bulk power grid analysis converter architectures and planning for generation,

Perform vehicle-level electrical system and control design for electric transportation

Develop architectures and controls for PEM fuel cells and electrolyzers

Perform power system analysis and energy management design for residential and commercial buildings

AI for Electrification

(1)

Apply artificial intelligence (AI) techniques to the design, control, and operation of power electronic devices and power systems.

transmission, and distribution

systems

Thank you

