Automatically Discerning Power System Dynamics in Synchrophasor Measurements Data Spectra

Chetan Mishra, Luigi Vanfretti, Jaime Delaree Jr., Kevin D. Jones

Overview

- Value of Measurement Data-Based Analysis
 - Emerging stability issues
 - Historical data analysis
- Towards Labeling Data with Emerging Dynamics
 - Time-frequency representation
 - Thresholding
 - Labeling
- Takeaways

Emerging Stability Issues in Dominion's Grid (Value of Data-Based Analysis)

- Controller design and testing
 - Decentralized control designed against a range of Thevenin equivalents, simulations with PSS/E planning model
 - Set it and forget it (wait for the next time it goes rogue or trips)
- Inadequate modeling
 - Absence of models for non-utility owned assets
 - Inaccuracy absence of control limiters, averaging fast dynamics, not updated to reflect changes
- Result unprecedented local oscillations
 - Most noticeable from poorly set controllers during maintenance outage season
- · Measurement data is left as only recourse for analysis:
 - Helps explain, *in part*, the nature of emerging dynamics.
- Need to go beyond oscillation characterization
 - Determining the frequency, damping and source is only one part of the process
- Insights from data help, in part, to explain other aspects of emerging dynamics:
 - Could we have anticipated it?
 - How to prevent it?
 - What to do next time it happens?

Historical Data Analysis is the Key (Collecting Enough Data on *"Features"* to Analyze)

• Most major controller issues leave clues because of a cyclical and largely continuous nature of operation

- Discerning the type of data features:
 - Physical issues (dynamics) vs instrumentation/comm issues vs Controlled Inputs
 - Should *observed* periodic (undamped) motions always trigger alarms? Are they always related to dynamics?
 - *Data features may include artifacts* that are not related to the grid's dynamics but are product of instrument issues.
 - Long-term behavior could help discern the nature of the features in the data.

Clock-Error Created Periodic Component in Angle [C]

[B] Mishra, Chetan, et al. "Analysis of Generator Forced Oscillations During MOD 25 Testing Exploiting Wavelets." (2024). [C] Mishra, Chetan, et al. "Analysis of Periodic Clock Errors in Synchrophasor Ambient Data." 2023 IEEE Power & Energy Society General Meeting (PESGM). IEEE, 2023.

April 30, 2024

Historical Data Analysis is the Key

(Collecting Enough Data on "Similar Dynamics" to Analyze)

- Preventing future dynamic issues
 - Understanding the **underlying mechanism** (what to fix after the fact?)
- Correcting by learning from the past
 - What **action** to take in real time? (how did an asset respond to past actions?)

- Looking for common patterns between issues at different locations
 - Learning from issues at other similar sites and drawing connections (small set of vendors)

Oscillations in Multiple Solar During Low Irradiance Periods

5 April 30, 2024

[D] C. Mishra, L. Vanfretti, D. Yang, C. Wang, X. Xu, K.D. Jones and M.R. Gardner, "Analysis of STATCOM Oscillations using Ambient Synchrophasor Data in Dominion Energy," 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Feb. 21-24, 2022, Washington D.C., USA.

Thresholding Time-Frequency Representation

An Image Segmentation Based Approach [F]

6 April 30, 2024

[F] C. Mishra, L. Vanfretti, J. de la Ree Jr., and K. D. Jones, "Automatically Discerning Power System Dynamics in Synchrophasor Measurements Data Spectra," 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023.

Towards Labeling Data for Unique Dynamics

- System is full of unaccounted for / difficult to explain oscillatory dynamic behaviors
 - · Need a way to discover them and track them
 - No simulation model to guide the search
- System mostly in ambient conditions
 - Frequency domain to separate underlying processes
- · Non-stationary nature of local modes (adding temporal aspect)
 - Sensitive to system changes, switching on-off, internal changes in control modes
- · Approach: time-frequency characterization of ambient data

 $x(t) = \int e^{j2\pi ft} H(t, f) dz(f)$

- Time varying spectrum $S(t, f) = |H(t, f)|^2$
- Modes represent set of local maxima at each time $P = \{(t^*, f^*) \in R^2 | \partial_f S |_{t^*, f^*} = 0, \partial_f^2 S |_{t^*, f^*} < 0\}$

Labelling Unique Dynamics

Improperly Set Color Range (Analysis Based on Visual Inspection Can be Deceptive)

Problem Formulation and Practical Challenges

Challenges

- Stochastic system \Rightarrow estimation noise in $\hat{S}(t, f)$ makes it difficult to capture low power dynamics
 - Bias-variance tradeoff goal to estimate peaks and not precision in $S(t, f) \Rightarrow$ more margin of sacrificing bias
- Time-frequency resolution tradeoff
 - Cannot find an isolated peak
- Constraint simple to use it in practice (few hyperparameters to tune)

ominion

Proposed Approach

April 30, 2024

Pre-Processing

- Dynamics in addition to oscillatory behaviors
 - Slow trends:
 - Arise from changing operating conditions (contributing to low frequency range)
 - Require detrending prior to spectral estimate
 - Broad-band:
 - Random inputs, e.g. arc furnace
 - Or from transients/ discontinuous changes in operation
- Can address these by estimating and removing spectral **baseline**
 - Removing longer scale (in frequency)
 dynamics
 - Allows for global threshold (across time)

Baseline $logS(t, f)_b$ defined as a smooth under-approximation to the spectrum

$$logS(t,f)_{b} = argmin_{b(f)} \sum_{f} \underbrace{w(err(f))}_{\substack{skew \ towards \\ underapprox}} \underbrace{err^{2}(f)}_{\substack{fit \ error}} + \underbrace{\lambda}_{\substack{penalizes \\ curvature}} \sum_{f} \left(\nabla_{f}^{2}b(f)\right)^{2}$$

Spectrogram Properties and Thresholding

- **Thresholding** spectrogram (for relatively high value regions) equivalent to image thresholding on grayscale images (intensity of $(t, f)^{th}$ pixel given by $\log(\hat{S}(t, f))$
- Histogram based approaches take advantage of pixel intensity distribution, of special relevance in terms of simplicity
 - $\mu(z)$ represents number of pixels with intensity below z
- No technique universally applicable to all kinds of images \Rightarrow need to understand the pixel intensity distribution $\frac{d\mu}{dz}$ of ambient data spectrograms
 - Largely unimodal (few modes or oscillations (small measure of prominent frequencies at unequal intensities), estimation noise $\log(\chi_2^2)$ unimodal)
 - Baseline removal further ensures this
 - Finding dynamics equivalent to finding the right tail

Results

Fast Oscillations from Load [F]

- 1. 14 Hz oscillation from 2-4 AM.
- 2. Difficult to characterize dynamics visible blurred region in 10-12 Hz range
- 3. Mode from nearby solar (only during day time) [E]

- 4. Repeating and persistent peaks at 1 Hz and its multiples resulting from a periodic voltage sag [H]
- 5. Poor frequency resolution (fast varying mode)
- Around 16:00 Hrs, the spectral baseline shifts up, likely due to nearby device connecting/disconnecting.

12 April 30, 2024

Tooling PingThings + Customizable Workflows in Python

- Speed of data extraction is the biggest bottleneck for historical data analysis
- No tool solves all the problems ٠
 - Essential to have a good understanding of the underlying theory to use/tune pre-built tool
 - Or better, build what is needed with full access/control on all the algorithms • and workflows
- Best a customizable environment to do whatever you want
 - Requires to have access to an API to pull data/results
- Python support rich data science libraries
 - We leverage many signal processing libraries to build our own workflows.
- The analyst is the key, not the tool
 - Tools can be replaced, human experience, insight and understanding cannot.
- Developing analysts is challenging .

 - Incentives not aligned between universities and industry Power engineering knowledge is required to derive insights on data analysis results.

Multiresolution Data Allows for Faster Queries to Analyze Dynamics

13 April 30, 2024

Takeaways

- Need to go beyond basic oscillation characterizations (frequency, damping, source) to prevent stability issues
 - Requires collecting enough evidence to draw inference, efficient access to large scale data is a must.
 - The analyst is the key: the tool can be replaced, while human experience, insight and understanding, cannot.
 - Understanding underlying mechanism is essential, need a strong foundation in power systems to interpret the results.
 - Universities should consider expanding the curriculum to cover how to apply digital signal processing for power engineering problems that require both power insight and signals knowledge.
- System is full of unaccounted for / difficult to explain dynamic behaviors
 - Need a way to discover them and track them to prevent stability problems
 - Conventional simulation models to guide the search are not available, would be nice to have (compliment the analysis)
 - Local dynamics can be fairly non-stationary (in terms of spectral characteristics)
- The present work explores automatically identifying prominent dynamics in synchrophasor data spectra you can find more details in:
 - C. Mishra, L. Vanfretti, J. de la Ree Jr., and K. D. Jones, "Automatically Discerning Power System Dynamics in Synchrophasor Measurements Data Spectra," 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023. Online: <u>here</u>

References

[A] C. Mishra, L. Vanfretti, J. Delaree and K. D. Jones, "Analyzing a Non-Sinusoidal Response from a Real-World Solar PV," in IEEE Transactions on Power Systems, vol. 39, no. 2, pp. 4771-4774, March 2024, doi: 10.1109/TPWRS.2024.3350377. Author's copy: <u>here</u>

[B] C. Mishra, L. Vanfretti, M. Baldwin, J. de la Ree Jr., and K. D. Jones, "Analysis of Generator Forced Oscillations during MOD 25 Testing Exploiting Wavelets," Hawaii International Conference on System Sciences (HICSS), Hilton Hawaiian Village Waikiki, January 3-6, 2024. Author's copy: here

[C] C. Mishra, L. Vanfretti, J. de la Ree Jr., T.J. Purcell, R. Orndorff, K. D. Jones, "Analysis of Periodic Clock Errors in Synchrophasor Ambient Data," 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023. Author's copy: <u>here</u>

[D] C. Mishra, L. Vanfretti, D. Yang, C. Wang, X. Xu, K.D. Jones and M.R. Gardner, "Analysis of STATCOM Oscillations using Ambient Synchrophasor Data in Dominion Energy," 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT 2022), Feb. 21-24, 2022, Washington D.C., USA. Author's copy: here

[E] C. Wang, L. Vanfretti, C. Mishra, K.D. Jones, R.M. Gardener, "Identifying Oscillations Injected by Inverter-Based Solar Energy Sources," 2022 IEEE Power & Energy Society General Meeting, 17–21 July 2022, Denver, Colorado. Author's copy: here

[F] C. Mishra, L. Vanfretti, J. de la Ree Jr., and K. D. Jones, "Automatically Discerning Power System Dynamics in Synchrophasor Measurements Data Spectra," 2023 IEEE Power & Energy Society (PES) General Meeting (GM) Orlando, Florida, 16 – 20 July 2023. Author's copy: here

[G] X. Xu, C. Mishra, L. Vanfretti, C. Wang, K. D. Jones, M. R. Gardner, and S. Murphy, "Fast Oscillation Detection and Labeling via Coarse Grained Time Series Data for ML Applications," 2022 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference, Feb. 21-24, 2022, Washington D.C., USA. Author's copy: here

[H] X. Xu, C. Mishra, L. Vanfretti, C. Wang, K.D. Jones, J. Brian Starling, and R. M. Gardner, "Tracking Periodic Voltage Sags via Synchrophasor Data in a Geographically Bounded Service Territory," 2023 IEEE Grid Edge Technologies Conference & Exposition, April 10-13, 2023, San Diego, California, USA. Author's copy: here

Thank You Questions ?

