Case Study of Building Loads Using Continuous Time-Synchronized Waveform Measurements

Jared Bestebreur, Product Line Manager

Continuous oscillography reporting rate

Faster sampling uncovers more disturbances

Source: A. F. Bastos, S. Santoso, W. Freitas, and W. Xu, "SynchroWaveform Measurement Units and Applications," 2019 IEEE Power & Energy Society General Meeting, Atlanta, GA, 2019, pp. 1–5.

Never miss an event again

Continuous recording captures all disturbances without detection configuration

Continuous sampled oscillography

- Conversion of an analog signal to a series of discrete time-stamped values
- Fixed time interval (T_S) between samples
- Instantaneous time-domain sampled voltage and current measurements
- Granulated and legitimate fundamental data of the power system

1.5 MVA 480 V office building electric service

Lights flicker due to rapid voltage changes

Thermal chambers constantly changing load

Just a few cyclical loads can add up

VOLTAGE	208-3-60
LARGEST MOTOR	2HP I3AMPS
OTHER LOADS	5.2AMPS
MAX HEATER LOAD	3.5KW 16.8AMPS
FULL LOAD AMPS	35AMPS
MINIMUM SERVICE	40AMPS

60 kW "instantaneous" power change

Varying loads cause voltage ripple

Unbalance clearly seen in current waveform

View voltage sags as waveforms and RMS

Motor starts

Small unexpected voltage spikes

Significant voltage transients

Transients measured at 120% of nominal

Line-to-car sag captured on adjacent feeder

Energy packets simplify cyclical load detection

Decompose power into p^{POS} and p^{NEG} pulses

Energy is simply the integral of power

Energy packet theory – report energy in discrete time intervals

We now see bidirectional energy transfer in any time period

Thank you

