Continuous (Gapless) Recording of Synchro-waveforms: Field Experiments and Case Studies

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow Department of Electrical and Computer Engineering University of California, Riverside

Collaborators: Alex McEachern (McEachern Lab), Richard Kirby (SEL), Manuel Cahuich (SEL), Chris Mullins (PMI), Narges Ehsani (UCR), Fatemeh Ahmadi (UCR), Zong-Jhen Ye (UCR), Hossein Mohsenzadeh (UCR), Milad Izadi (UCR), Wilsun Xu (UA), Mladen Kezunovic (TAMU), Farnoosh Rahmatian (NG)

Synchro-Waveforms

Event-Triggered Waveform Capture:

- Power Quality Meters
- Digital Fault Recorders

Phasor Measurement Units

- In event-triggered waveform capture, there is *no guarantee* that all the informative cycles of the synchro-waveforms are captured at each WMU.
 - A *tight event-capture criteria* can result in losing important information.
 - A *loose event-capture criteria* can frequently trigger waveform capture where information of interest is not contained, causing additional overhead in data processing.
- Ultimately, the sole advantage of event-triggered waveform capture is to cope with the *limitations of data storage and communication*.

Example: IBR 1 / WMU 1 Grid Disturbances Switch No Waveform Capture at WMU 2! Fault **WMU 2** WMU 1 Amplitude Modulation IBR 2 \pm^{f} sideban IBR 1

Examples for Continuous (Gapless) Recording

• Local Recording (Example: McEachern's GridSweep)

 GridSweep-6-10_2022-10-31_00-13-00_UTC GridSweep-6-10_2022-10-31_00-14-00_UTC GridSweep-6-10_2022-10-31_00-15-00_UTC GridSweep-6-10_2022-10-31_00-16-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File	4,362 KB 4,362 KB 4,361 KB 4,361 KB	
 GridSweep-6-10_2022-10-31_00-17-00_UTC GridSweep-6-10_2022-10-31_00-18-00_UTC GridSweep-6-10_2022-10-31_00-19-00_UTC GridSweep-6-10_2022-10-31_00-20-00_UTC GridSweep-6-10_2022-10-31_00-21-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File CSV File	4,361 KB 4,362 KB 4,362 KB 4,361 KB 4,361 KB	
 GridSweep-6-10_2022-10-31_00-22-00_UTC GridSweep-6-10_2022-10-31_00-23-00_UTC GridSweep-6-10_2022-10-31_00-24-00_UTC GridSweep-6-10_2022-10-31_00-25-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File	4,362 KB 4,361 KB 4,361 KB 4,361 KB	Each File: One Minute
 GridSweep-6-10_2022-10-31_00-26-00_UTC GridSweep-6-10_2022-10-31_00-27-00_UTC GridSweep-6-10_2022-10-31_00-28-00_UTC GridSweep-6-10_2022-10-31_00-29-00_UTC GridSweep-6-10_2022-10-31_00-29-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File	4,361 KB 4,361 KB 4,361 KB 4,362 KB	
 GridSweep-6-10_2022-10-31_00-30-00_UTC GridSweep-6-10_2022-10-31_00-31-00_UTC GridSweep-6-10_2022-10-31_00-32-00_UTC GridSweep-6-10_2022-10-31_00-33-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File	4,362 KB 4,362 KB 4,362 KB 4,362 KB	
 GridSweep-6-10_2022-10-31_00-34-00_UTC GridSweep-6-10_2022-10-31_00-35-00_UTC GridSweep-6-10_2022-10-31_00-36-00_UTC GridSweep-6-10_2022-10-31_00-37-00_UTC GridSweep-6-10_2022-10-31_00-38-00_UTC 	4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM 4/8/2024 7:51 AM	CSV File CSV File CSV File CSV File CSV File	4,362 KB 4,362 KB 4,362 KB 4,362 KB 4,362 KB	

Examples for Continuous (Gapless) Recording

- Local Recording (Example: McEachern's GridSweep)
- Streaming through Ethernet (Example: SEL's Axion)

Screenshot at Data Server

Examples for Continuous (Gapless) Recording

- Local Recording (Example: McEachern's GridSweep)
- Streaming through Ethernet (Example: SEL's Axion)
- Streaming to Cloud (Example: PMI's Seeker)

Cloud Data Files

Cloud-based Python Code

Power Outlet (Continuous/Gapless)

250

Occasional Triger: At one IBR once every several weeks.

 Δ : Differential Voltage and Current

 Δ : Differential Voltage and Current

[Farajollahi, et. al, IEEE Trans. on Power Systems, 2018]

Thank You!

Hamed Mohsenian-Rad, Ph.D., IEEE Fellow

Professor and Bourns Family Faculty Fellow Department of Electrical and Computer Engineering University of California, Riverside E-mail: <u>hamed@ece.ucr.edu</u> Homepage: <u>www.ece.ucr.edu/~hamed</u>