

Machine Learning Based State Estimation for PMU-Unobservable Transmission Systems – TVA Case Study

Evangelos Farantatos, Lin Zhu Electric Power Research Institute

Anamitra Pal, Antos Varghese, Hritik Shah, Ahmed Albutayshi Arizona State University

Gregory Dooley, Mody Nakhla, Michael McAmis Tennessee Valley Authority

in X f www.epri.com © 2024 Electric Power Research Institute, Inc. All rights reserved. NASPI Work Group Meeting April 16-17, 2024 Salt Lake City, UT

State Estimation

Backbone EMS Function for Situational Awareness

- State Definition [x]: Positive sequence voltage phasors (bus voltage magnitudes and angles) of system's buses
- Measurement Set [z]: SCADA data
 - Voltage magnitude, current magnitude, real & reactive power flows and injections
 - Measurement model: Nonlinear
 - Gaussian distribution of measurement error
- Solution Algorithm: Weighted Least Squares
 - Iterative Solution

PMU Based State Estimation

- a.k.a Linear State Estimation
- Measurement Set [z]: Phasor Measurement Unit (PMU)

EPC

- Voltage and current phasors
- Measurement model: Linear
- Gaussian distribution of measurement error
- Solution Algorithm: Weighted Least Squares
- Direct Solution

Objective

Features

Model Independent
Independent of Measurement Error Distribution
Overcomes SCADA/PMU Synchronization Issues

Achieves Full System Observability with Limited
 Number of PMUs

High Speed

Deep Neural Network-based State Estimator (DeNNSE)

Deep Neural Network (DNN)

- DNN Input: PMU measurements
- DNN Output: States of the system
- Target accuracy:
 - <0.1% error in magnitude
 - <0.5° error in angle</p>

DNN Training

- Collect historical SE data (Load, generation, system model)
- Probability distribution function fitting
- Monte Carlo sampling and PF/OPF solution
- Embed noise functions to mimic instrumentation errors: "Synthetic Measurements"
- Identify dominant topologies
- Train DNN hyperparameters for base topologies and specific PMU placement

LSE vs ML-SE - Topological Observability

Full Grid Observability with Limited Number of PMUs

- Linear State Estimation (LSE): number of estimated states depends on topological observability from PMUs
- ML based SE: entire system state estimation without need for topological observability

IEEE 118 Bus System – Estimation Error				
Scenario Metric	LSE 32 PMUs	ML-SE 13 PMUs		
Voltage Magnitude	0.00100 p.u.	0.0010 p.u.		
Voltage Angle	0.00199 rad	0.0020 rad		

PMU Observability

Bad/Missing Data & Topology Changes

- Bad/Missing data detection based on Wald Test
- Bad/Missing data replacement with Nearest Operating Condition (NOC) from training dataset
- Transfer Learning used for DNN update when topology changes

EPC

Train DNN for

base topology

TVA Case Study

Data Received from TVA

State Estimator Cases

- PSS/E .raw files from July 1 to December 31 (6 months)
- 2 files for each day (at 2:00 PM and 2:30 PM) \rightarrow 366 files
- The TVA area was chosen for this study

PMU Measurements

PMU data for 5 days of 5 months (2:00 PM – 3:00 PM in every file)

• PMU measurement data

kV Level	#PMUs	#Substations
500	130	29
345	3	1
230	15	5
161	517	92
<=138	44	19

- PMU data resolution: 1 sample/second
- 709 voltage and current measurement channels each

PMU Observability: 20-25%

Topology Identification

- Topology clustering
 - Branch difference matrix for consecutive cases
 - Applied K-means clustering to the matrix

Cases in each Days in each Cluster Cluster Cluster Case 1 to Case 22 T₁ July 1 to July 11 Case 23 to Case 92 T_2 July 12 to August 15 Case 93 to Case 120, August 16 to August 30, T_3 Case 314, Case 315 Dec. 10 T₄ August 29 to Sep. 21 Case 121 to Case 164 T_5 Case 165 to Case 178 Sep. 22 to Sep 28 T_6 Case 179 to Case 236 Sep 29 to Oct 27 T_7 Case 238 to Case 278 Oct 28 to Nov 17 Case 279 to Case 334 Nov 18 to Dec 20. T_8 (excluding 314, 315) excluding Dec. 10 T۹ Case 335 to Case 366 Dec 21 to Dec 31

DeNNSE Training Input

• DNN requires a large amount of data (big data) to learn the mapping relations between the input features and the output variables

Input Features

- 687 Voltage phasors
- 447 Current phasors
- From the obtained probability density functions (PDFs), 8,000 samples were generated for each feature

DeNNSE Training Output

• DNN output: estimated states are voltages at 69 kV and higher, within the TVA area

• The output dimension is determined considering the buses that are common to T_1 and T_2

EPRI

DeNNSE Results - Training for T₂

- DNN is trained and tested on T₂
- PMU data from Aug 15: 2:25 PM-2:30 PM is used for testing

DeNNSE Results Summary with and without Transfer Learning

- To analyze the effectiveness of the transfer learning, two cases are studied
 - DeNNSE is trained and tested for T₂
 - DeNNSE is trained on T_1 , adapted to T_2 using transfer learning, and then tested on T_2
- The PMU data from Aug 15: 2:25 PM-2:30 PM is used for testing in both cases

DeNNSE trained for T₂

Voltage Magnitude	Voltage Angle Error
Error (%)	(Degrees)
0.212	1.26

DeNNSE trained using T₁ and updated using Transfer Learning for T₂

Voltage Magnitude	Voltage Angle Error
Error (%)	(Degrees)
0.228	1.29

DeNNSE Results - Comparison with SCADA State Estimator - 500kV

- Comparison between SCADA-SE and DeNNSE for August 15th
- SCADA-based state estimator output at 2:30 PM is compared with the mean value of DeNNSE obtained using PMU data between 2:25 PM-2:30 PM

Summary

DeNNSE: ML & PMU-based state estimation

- 1) Achieves full system observability with limited number of PMUs
- 2) High speed
- 3) Avoids synchronization challenges between PMU and SCADA data
- 4) Model used only for training

DeNNSE applied to the TVA system

Satisfactory DeNNSE results despite the limited PMU coverage

Project Participants

TOGETHER...SHAPING THE FUTURE OF ENERGY®

in X f www.epri.com

© 2024 Electric Power Research Institute, Inc. All rights reserved