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Overview of Forced Oscillations

Relatively common power system events
PMUs have led to much greater awareness in recent years
Resonance can lead to system-wide oscillations
Potential to negatively impact equipment and operation
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The Power Grid as a System

September 21, 2017 3
Image courtesy of: D. Trudnowski, M. Donnelly and E. Lightner, "Power-System Frequency and Stability Control using 

Decentralized Intelligent Loads," 2005/2006 IEEE/PES Transmission and Distribution Conference and Exhibition, Dallas, TX, 2006, 
pp. 1453-1459.

Inputs Outputs



The Power Grid as a System
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Inputs, 𝑥𝑥 Outputs, 𝑦𝑦𝑦𝑦 = 𝑓𝑓(𝑥𝑥)



The Power Grid as a System

Inputs
Disturbances that change the grid’s state
Examples

Fault
Trip of a line, generator, or load
Persistent random load changes
Oscillatory load or generation
Control actions

Outputs
Measurements distributed throughout the system
PMUs are crucial

Synchronization
High reporting rate
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What is a Forced Oscillation?

Oscillation
An unintentional periodic exchange of energy across different 
components of a power grid
Characterized by a set of frequency, damping, amplitude, and phase 
terms

System response
An output associated with a set of inputs
Total System Response = Natural Response + Forced Response

Natural Response: the portion of the response associated with the system
Forced Response: the portion of the response associated with the input

Forced Oscillation: the forced response of a system to a periodic input
Visible in power, frequency, and voltage measurements
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Example: System Response
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Example: System Response to Periodic Input
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Implications

Appropriate action when a sustained oscillation appears depends on 
the oscillation’s type

Forced: disable the input
Natural (modal): adjust system operation to improve stability

Forced oscillations reflect the characteristics of a periodic input to the 
system

What are the periodic inputs?
What are the characteristics of a forced oscillation?
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Causes of Forced Oscillations

Sources are varied
Traditional generation, e.g., fossil, hydro, and nuclear plants
Alternative generation, e.g., wind and solar
Cyclical loads, e.g., aluminum smelting
Malfunctioning controls

Examples from forthcoming NERC reliability guideline “Forced 
Oscillation Monitoring & Mitigation” 

Broken valve on thermal unit
Operation of hydro unit in rough zone
Wind power plant control
HVDC controller
Operating mode of combined cycle plant
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Characteristics of Forced Oscillations

Setup
Any periodic input can be written as 𝑥𝑥(t) = 𝑎𝑎0 + ∑ℎ=1∞ 𝑎𝑎1 cos ℎ𝜔𝜔0𝑡𝑡 + 𝜃𝜃ℎ
Power systems tend to behave linearly about an operating point
The system applies a frequency-dependent gain and phase shift to each 
component
Measured outputs take the form 𝑦𝑦 𝑡𝑡 = 𝑏𝑏0 + ∑ℎ=1∞ 𝑏𝑏1 cos ℎ𝜔𝜔0𝑡𝑡 + 𝜙𝜙ℎ
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Characteristics of Forced Oscillations
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Characteristics of Forced Oscillations
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Characteristics of Forced Oscillations
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Damping?
Like mode shape, damping is a characteristic of the system
Observable in ambient and transient data because they are natural
responses
A forced oscillation’s undamped nature does not reflect the system’s 
damping
Example:

Fit measured data to  𝑦𝑦 = 𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥 + 𝑐𝑐
𝑎𝑎 ≈ 0 indicates that the data is linear
𝑦𝑦 = 𝑚𝑚𝑥𝑥 + 𝑏𝑏 is a superior model

Low damping estimates indicate either…
A forced oscillation with nearly constant amplitude is present, or
A system mode has poor damping – don’t rule this out immediately!



Potential Impacts of Forced Oscillations

Equipment fatigue
Damage to rotor shafts
Poor power quality
Reduced production
Limited transfer capability
Generator tripping
Impeded efforts to monitor modal oscillations
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Analysis of Forced Oscillations

Detection
Determine that a sustained oscillation is present

Identification
Frequency

Harmonics?
Amplitude
Start and end time
Phase

Classification
Natural or forced?
Widespread or local?

Localization
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Analysis: Detection

A variety of detectors have been suggested
Energy [1]

Increased signal energy in predefined frequency bands
Periodogram [2]

Increased signal power at individual frequencies
Coherence [3, 4]

Significant coherence over time (single channel) or across the system 
(multichannel)

Oscillation Monitor [5]
Damping estimates near zero

Performance aspects of oscillation detectors
Delay – How long before the oscillation is detected?
Reliability – How many false alarms for each detected event?
Selectivity – Are only forced oscillations detected?
Robustness – How does performance vary under different conditions?
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Analysis: Source Location

Challenges
Oscillation shape

Forced oscillation shape conforms to mode shape when frequencies close
Amplitude may be largest far from source – see example in [5]

Model must be accurate to be utilized
Source variety

Approaches
Huge variety: traveling wave, damping torque, mode shape, energy,…
Applicability

Variety: forced, modal, agnostic
Forced oscillation source: conventional generation, renewable generation, etc.

For a survey, see [6]
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IEEE PES Task Force on Oscillation Source 
Location
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August 2016 – December 2019
Scope

Test case library: http://curent.utk.edu/research/test-cases
Summarize approaches
Theoretical investigation
Online algorithm development

http://curent.utk.edu/research/test-cases
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Questions?

September 21, 2017 27
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