Enhanced Reactive Margin Analysis using Synchrophasors

Vahid Madani (PG&E) Rahul Anilkumar, Tony Jiang, Damir Novosel (QT) Vijay Sukhavasi, Anil Jampala (GE)

NASPI October WG Meeting October 20, 2016

Reactive Power Margins/Reserves

• Reactive Reserve Monitoring (RRM)

- Real-time accounting of reactive margin in each of the zones by adding up unused reactive power capability of generators
- Summing up potential output of cap/reactor banks (not switched yet)
- **SIL Monitoring** A single line limit based on the value of a flow for which the reactive power production (due to line capacitance) equals the loss of line reactive power

Voltage Stability Assessment

- SE-based system dynamic model with relevant contingencies to detect how far the system can be stressed
- Defines a margin (e.g. corridor MW and MVAR) as difference of the monitored quantity at the collapse and the base case

RVII - Real-Time Voltage Instability Indicator

Voltage Stability/Reactive Margin Assessment

An integrated "MEASUREMENT-BASED" and "MODEL-BASED" approach

Implementation Options – Measurement Based

Detecting Real-time Reactive Margins

Identify polarity to determine SENDING or RECEIVING ends - Active and Reactive powers (aggregated over the corridor) can flow in different directions

Accurate calculation of Equivalent Impedance & Reactive Margin requires:

- Observability Absence of a PMU
- Flags
 - ✓ Identify Unloaded and open ended systems
 - ✓ Incorporate switching or outages, e.g. line or equipment, bypassing capacitors
 - ✓ Incorporate loss of a PMU data (e.g. momentary bad network connection)

6

RVII Enhancements

Extrapolation

- Constant power factor load increase until boundaries reached
- Unlike other solutions, system equivalent parameters are dynamically computed
- Prediction Technique Integrates real-time measurements and model based parameters
- RVII accounts for
 - Corridor Reconfiguration (e.g. planned or unplanned outages, equipment / flags status
 - PMU location Selection within available corridors based on availability
- Advanced Detection routines Indices range from simple computation of ratio of impedances to dynamic indices
- Load Shedding Trigger- Combines functionality of RVII indices and extrapolation margins to trigger (Rule vs Adaptive schemes)
- **Data Quality** Algorithm needs to be robust for production or sustainability to PMU data flow intermittencies

RVII Validation

- RVII capabilities have been extensively tested
 - PG&E Proof of Concept facility with RTDS reduce network model
 - Load flow and dynamic simulation models
 - Data from Production EMS
- Corridor RVII has been validated on multiple corridors
 - MW and MVAr margins are compared, along with observed equivalent impedances
- Objective: Model validation and baselining
 - Preparation for contingency analysis assessment in real-time
 - Analyze trends in the data
- Case Results Presented

Power & Energy Society

- Tesla Tracy Metcalf Los Banos (Corridor 1)
- Los Banos Diablo Gates Midway (Corridor 2)

8

Model Validation: Case fidelity; Corridor 1 (time scales aligned)

P-Q operating plane

Margin Comparisons: Load flow, POC Facility, Production Baseline, No Contingency for Corridor 1

	PSLF (Peak Flow)		POC	
	Collapse margin	Operating margin	Collapse margin	Operating margin
Active Power Margin (MW)	2405	2014.22	2627	1895.34
Reactive Power Margin(MVAr)	-550	-315	-839	-612

- Average margins computed over the period of simulation
- RVII successfully tested using production data, typical operational days (P-Q plots on previous slide)

Model Validation: Case fidelity; Corridor 2 (time scales aligned)

P-Q operating plane

Margin Comparison: Baseline, No Contingency for Corridor 2

	PSLF (Peak Flow)		ΡΟΟ	
	Collapse margin	Operating margin	Collapse margin	Operating margin
Active Power Margin (MW)	3274	2881	2799	2214
Reactive Power Margin(MVAr)	-2800	-2611	-1150	-934

- Average margins computed over the period of simulation
- RVII successfully tested using production data, typical operational days (P-Q plots on previous slide)

Performance: Real-time Dynamic Condition in the Region

Objective: Model Validation and Baselining

Measurement and Model based margins are compared

- Event 1: Typical Operating day (no outage condition)
- Event 2: Series capacitor insertion in neighboring system 500 kV network due to RAS action
 - ✓ Validate load flow against operational events
 - \checkmark Verify angles across parts of the system
 - ✓ RVII to estimate the system margins using dynamic model based simulation
 - Generator dynamic models initialized
 - Round Mt- Table Mt corridor evaluated

Reactive Power Margins (Event 1)

Close correlation in results observed between models.

	PSLF (Peak Flow)	POC	Production (Typical)*
Active Power Margin (MW)	2929.14	2542.884	2089.415
Reactive Power Margin(MVAr)	-451	-314	-206

* RVII was run with data gaps in the simulation (no data quality filtering). Hence averaged over several smaller periods.

Reactive Power Margins (Event 2)

Evolution of margins throughout the event represented in P-Q plane

CONCLUSIONS

- Knowledge of reactive margin is critical to system operation
- Tools performance validation before placing to operation
 - Importance of flags
 - Data quality and tool tolerance to imperfect data
 - Proper corridor identification (Incoming and outgoing sources)
 - Angle measurement
- Impact of observability
 - Optimizing use of available measurements
 - Importance of redundancy of measurements
- RVII has been validated to perform well under dynamic condition and disturbances in the WECC system
 - Continue with additional validations of future system disturbances

Supplemental Information

Voltage Instability Related Work by Others? A small sample

- Sandro Corsi, and Glauco N. Taranto IEEE Transaction 2008
- Vijay Vittal, e.t.al ASU, Sharma Kolluri, et. al – Entergy –- Decision Tree Assisted Online Security Assessment using PMU measurements; PSERC Project 2008
- Venkataramana Ajjarapu Iowa State Univ -Computational Techniques for Voltage Stability Assessment and Control – 2007 – Publisher, Springer
- IEEE and CIGRE technical committee on Stability Terms and Definitions
- A lot of work within the WECC Dynamic Modeling and Validation and Technical Study Subcommittee
- K. Vu and D. Novosel, "Voltage Instability Predictor (VIP) - Method and System for Performing Adaptive Control to Improve Voltage Stability in Power Systems," US Patent, April 2001.

- K. Vu, M. M. Begovic, D. Novosel, and M. M. Saha, "Use of Local Measurements to Estimate Voltage-Stability Margin", IEEE Trans., Aug. 1999
- J. A. Diaz de Leon, C. W. Taylor, "Understanding and Solving Short Term Voltage Stability Problems," Proc. IEEE PES Summer Meeting 2002, Jul. 2002.
- T. Van Cutsem, C. D. Vournas, "Emergency Voltage Stability Controls: An Overview," Proc. IEEE PES General Meeting, Tampa, Jun. 2007.
- M. Glavic, D. Novosel, E. Heredia, D. Kosterev, A. Salazar, F. Habibi-Ashrafi, M. Donnelly, "See It Fast to Keep Calm," IEEE Power and Energy Magazine, July/August 2012.
- M. Glavic, D. Lelic, and D. Novosel, "Real-Time Monitoring of Electric Power System Voltage Stability Margins," US Patent
- M. Glavic, T. Van Cutsem, "State Reconstruction from Synchronized Phasor Measurements ", Innovative Smart Grid Technologies meeting, 2011.
- M. Glavic, T. Van Cutsem," State Reconstruction from a limited set of Synchronized Phasor Measurements : Application to Voltage Instability Detection" Proc. S General Meeting, Washington DC, Jan.

