

NASPI-NERC Workshop PPMV Tools Calibration Session Overview

Ryan Quint, Deepak Ramasubramanian, NERC October 2016

RELIABILITY | ACCOUNTABILITY

Model (In)Validation

Model verification studies do not match historical responses.

Blue = actual Red = simulated

Model (In)Validation

- What do you do next?
- Before you hire consultant to do baseline model development or model calibration, do basic checking first:
 - Verification studies over multiple events
 - Confirm that you are using the most recent dynamic models
 - Check powerflow data, particularly transformer impedances and tap position
 - Make sure operating conditions modeled correctly (e.g. head on hydro power plant, frequency response mode, temperature limits, etc.)
- If all options are exhausted, can disturbance data be used for model calibration?

- Essential elements of disturbance-based model verification:
 - First and foremost, you must know that the model structure is correct
 - Engineering knowledge of the plant controls is essential
 - Measurements at generator terminals are strongly preferred, including both stator and field quantities
 - Large number of events, including voltage and frequency deviations
 - Model calibration vs. curve-fitting
- Some success stories using disturbance-based calibration
 - EPRI Power Plant Parameter Derivation application user's group

Model (In)Validation

- Successful model calibration for large thermal plant
 - Subsequent verification successful over dozens of events

Red = simulated

Blue = actual

RELIABILITY | ACCOUNTABILITY

- 1. Workshop organizers developed event dataset suite
- 2. Each participant given
 - 1. Complete set of twelve (12) grid disturbances measured by PMUs
 - 2. Powerflow model for arbitrary conditions
 - 3. Dynamics models known to have issues
- 3. Participants performed calibration on dynamics models using datasets and root models provided
- 4. Participants will provided dynamics data of calibrated models
- 5. Workshop organizers reviewed results and tested on additional dataset

- Steam Turbine Generator
- Gas Turbine Generator
- Hydroelectric Generator
- Each case includes single unit, generator step-up (GSU) transformer, and equivalent system model

- PMU measures the following quantities at the high-side of the generator step-up (GSU) transformer
 - Bus Voltage Magnitude and Angle
 - Bus Frequency
 - Active and Reactive Power

Sequence of Events

- 12 sequential events provided for each unit
 - Certain events might consider different generator operating modes

5							
Time Vact Fact Pact Qact //Head							
1 500 60) 1 1	// Scale					
0 0 0	0 0 //	Offset					
0 0 0	0 0 //	′ Tf					
0 0.8 0.	0 0.8 0.99 0 -200 // min						
0 1.2 0.	99 1000 20	00 // max					
75 1 1	11/	/ Plot					
0	547.4673	60.00002	79.98307	-1.99037	-143.67		
0.033333	547.456	60.00002	79.97124	-1.98633	-142.766		
0.066667	547.4365	60.00003	79.96841	-1.9858	-141.842		
0.1	547.4334	60.00004	79.96796	-1.98537	-141.828		
0.133333	547.4307	60.00001	79.98277	-1.94515	-141.442		
0.166667	547.4285	59.99997	79.98241	-1.94654	-140.981		
0.2	547.4281	59.99995	79.99251	-1.9517	-140.636		
0.233333	547.4366	59.99995	79.99373	-1.95304	-140.151		
0.266667	547.4298	59.99993	79.97747	-1.9955	-139.327		
0.3	547.4276	59.9999	80.0025	-1.96091	-138.379		
Time	V _{maq}	Freq	Р	Q	Ang		

Event #
01
02
03
04
05
06
07
08
09
10
11
12

Test Units

• Steam Turbine Generator

- genrou Round Rotor Machine
- esst4b Digital Static Rectifier Excitation System
- ggov1 General Purpose Turbine-Governor
- pss2b Digital Dual-Input Stabilizer

• Gas Turbine Generator

- genrou Round Rotor Machine
- rexs General Purpose Rotating Exciter
- ggov1 General Purpose Turbine-Governor
- pss2a Analog Double-Input Stabilizer

Hydroelectric Generator

- gentpj Synchronous Generator Model
- esst1a Bus-Fed Static Excitation System
- ieeeg3 IEEE Type 3 Turbine-Governor
- pss1a Analog Single-Input Stabilizer

STEAM TURBINE PLANT MODEL												
GENROU		ESST4B		GGOV1		PSS2B						
Param	Value	Param	Value	Param	Value	Param	Value					
Xd	2.3	лГ,	0	R	0	J1	1					
Xd	0.3	Kpr	5	Rselect	1	K1	0					
Xid	0.3	Kir	5	Tpelec	0.01	J2	3					
Xq	2.07	Ta	0.02	Maxerr	9.05	K2	0					
X'a	0.53	Vrmax	1	Minerr	-9.05	Vsi1max	2					
Xg	0.3	Vinin	-0.85	Kpgov	20	Vsi1min	-2					
X1	0.25	Kpm	1	Kigov	0	Tw1	2					
Ra	0.004	Kim	0	Kdgov	0	Tw2	2					
T°d0	6.5	Vmmax	1	Tdgov	0.05	Vsi2max	2					
T''d0	0.05	Vmmin	-0.85	Vmax	1	Vsi2min	-2					
T°q0	0.55	Kg	0	Vmin	0.1	Tw3	2					
T''q0	0.07	Kp	10.25	Tact	0.5	Tw4	0					
S(1.0)	0.14	Ang p	0	Kturb	1	T6	0					
S(1.2)	0.4	Ki	0	Wfn1	0.01	T7	2					
Η	2.3	Kc	0.15	Tb	10	Ks2	0.46					
D	0	X1	0	Tc	0.3	Ks3	1					
Rcomp	0	<u>Vbmax</u>	12.8	Flag	0	T8	0.5					
Xcomp	0	Vgmax	999	Teng	0	T9	0.1					
Accel	0			Tfload	0.3	N	1					
Kis	0			Kpload	1	М	5					
Pfd	0			Kiload	3.3	Ks1	50					
Pkd.	0			Ldref	1	T1	0.5					

Questions?

RELIABILITY | ACCOUNTABILITY