

PMU-based Power Plant Operation Monitoring and Innovative PMU Implementation

NASPI Work Group meeting

March 22-23, 2017 Gaithersburg, MD Pavel Kovalenko Alexey Danilin Viktor Litvinov

from information to action

Information Management Specialists

> Design, Develop and Deploy digital transformation solutions for InterConnected World.

- Power system and industrial automation
- Business Analytics, Data Warehousing and Big Data
- Information Security and Compliance

Ernst & Young Entrepreneur Of The Year*

GRT Sample Clients

PowerLink - APDC

- Highly customizable scalable platform for building WAMS using multi stream technology
- Distributed historian with very fast search and data export capabilities
- High performance (sampling rate of 50-200 measurements per second for one channel)
- Advanced visualization features
- Implemented in a very large geographically distributed system spanning more than 2000 miles with very low latency
- Advanced PDC

Phasor measurements data applications

Power plant operation monitoring system

GRT APDC-based integrated solution

Low-frequency oscillations challenges

Key risks for power systems and power plants:

- Reduced power plants and generators output
- Possible equipment damage
- Asynchronous operation conditions risk

Possible ways of mitigation:

- Timely LFO detection
- Quick localization
- Early warning for the operators
- Automatic control actions

Electromechanical oscillations monitoring software: online monitoring tool

Start 🔅 Settings 👻 Event Log

Online wide-area LFO monitoring visualization

Electromechanical oscillations monitoring software:

Start	🛟 Settings 👻 Event Log	3					0	Renglish 🔹 ?
Ado	Select modes of osc	cillation						×
Ot	Select oscillations groups	Show detailed m	nodes only					
X ∗G			▼					
	Object	Тупе	▲ Start time	Duration (s)	Erequency	Magnitude		
		iype	Surctime		frequency 0.98	Magintade	UN	
	t Gen1	Active Power	13.03.2015.14-30-11.180	6.28	0.96	9.239 MW	9.1%	
	↓ Gen2	Active Power	13.03.2015 14:30:11.640	2.96	0.99	28.4 MW	15.9%	
				Local oscillations,	frequency 1.15			2:20
	≇ Gen3	Active Power	13.03.2015 14:30:11.300	4.04	1.14	14.8 MW	27.8%	
	₽ Gen4	Active Power	13.03.2015 14:30:11.320	3.2	1.16	22.1 MW	12.4%	
				Interarea oscillation	s, frequency 0.59			
	≇ Gen4	Active Power	13.03.2015 14:32:00.020	48	0.59	38.9 MW	-2.1%	
	* Gen3	Active Power	13.03.2015 14:32:01.020	47	0.60	44.3 MW	-1.9%	
800 MW	≢ Gen1	Active Power	13.03.2015 14:32:02.020	46	0.59	28.8 MW	-2.0%	
000 MM	₿ Gen2	Active Power	13.03.2015 14:32:17.540	30.48	0.58	26.8 MW	-2.4%	
	Local oscillations, frequency 1.00							
750 MW	* Gen3	Active Power	13.03.2015 14:32:01.100	19.92	1.04	4.329 MW	0.9%	2:20
	↓ Gen4	Active Power	13.03.2015 14:32:01.300	18.72	0.96	4.732 MW	1.0%	
Z00 MW Local oscillations, frequency 0.96								
	* Gen1	Active Power	13.03.2015 14:32:01.160	20.86	0.97	5.666 MW	2.0%	
650 MW	≢ Gen2	Active Power	13.03.2015 14:32:01.180	20.84	0.95	7.123 MW	1.196	
500 MW								
000 1111								
550 MW								Save 2:20

Detailed retrospective analysis

Electromechanical oscillations monitoring software: geographical visualization

Start 🙀 Settings 👻 Event Log

Geographical representation of the in-phase and antiphase objects oscillations

Power plant operation monitoring system: low-frequency oscillations

<	Start	Settings Event Log Multiple Approximation	dmin@APTEST) -	•	ž	English 🝷 ?
>	01.01.201	7 10:00:00 🛗 🕊 🕈 🕨 🕅 X 1.0 Frame 10 sec sec min day mon year	8 🛛 🖉	: 🧧 🥃 🛶		
	0.325 Hz	Frequency	Generators	A, MW	D, %	F, Hz
	0.300 Hz	Λ	Gen 1	2,5	8,0	0,27
	0.275 Hz		Gen 2 🛛 🔴	7,4 🔴	4,5 🔴	0,27
	0.250 Hz		Gen 3 🛛 😑	4,3	6,9 😐	0,26
	0.225 Hz 09	:44:34 09:44:36 09:44:38 09:44:40 09:44:42 09:44:44 09:44:46 09:44:48	Gen 4	3,4	7,2	0,28
		Magnitude	Gen 5	4,3	8,0	0,26
	50.0 MW -		Gen 6	9,6	3,5	0,27
			Gen 7	5,5	5,5	0,28
	30.0 MW		Gen 8	5,2	8,2	0,27
	20.0 MW		Line 1 🛛 🔴	47 😑	4,7 🔴	0,27
	09	:44:34 09:44:36 09:44:38 09:44:40 09:44:42 09:44:44 09:44:46 09:44:48	Line 2	37	4,8	F, Hz 0,27 0,26 0,26 0,28 0,26 0,27
	20.000 %	Damping ratio	Line 3	32,0	7,3	0,27
	20.000 //		Line 4	27,0	7,8	0,27
	0.000 %		Line 5	29,0	7,2	0,27
	-20.000 % 0	9:44:34 09:44:36 09:44:38 09:44:40 09:44:42 09:44:44 09:44:46 09:44:48	Details		History	

Power plant low-frequency oscillations monitoring subsystem

Unbalanced operation case

Unbalanced operation case

Unbalanced operation real-life case

Unbalanced operation real-life case

Key risks for power systems and power plants:

- Increased power losses
- Rotor overheating
- Mechanical vibrations
- Generator damage
 - Isolation abrasion and deterioration
 - Windings deformation and/or displacement

Possible ways of mitigation:

- Timely unbalanced operation detection
- Quick localization
- Early warning for operators
- Automatic control actions

Power plant operation monitoring system: unbalanced conditions

Power plant operation monitoring system: unbalanced conditions

Star	t 🗘 Settings	 Event L 	.og 🎍 pdc@PDC1 (pdc@Pl	DC1) ▼ v.3.1.4385.4975	13.10.2016 12:59	9:07	ו 0	English 🗸 ?
		<	01.01.2015 00:10:00	K ► ₩ ₩ X 1.0 Frame	1 min sec min	day mon year	چ 🖌 📱 📀	🧧 🥃 🔍
All		•	Power plant 1	5 10 15	5 10 15	5 10 15	5 10 15	5 10 15
~	Objects			110	80	110	125	125
 M 	Gen-1		P = 1155 MW Q = 550 MVar	240 Line-1	205 Line-2	240 Line-3	235 Line-4	235 Line-5
✓ ⁴⁴	Gen-2		F = 49,97 Hz ∆ = 9,9°					
~ 🕾	Gen-3							
✓ M	Gen-4							
✓ M	Gen-5							331,8
 M 	Gen-6	-			\rightarrow	\perp \perp	$ \downarrow $	
✓ ⁴⁴	Gen-7			$\langle \langle \langle \langle \rangle \rangle \rangle$				
 M 	Gen-8			15,75		\bigvee° \subseteq		15,75
 M 	Line-1				\bigcirc (
✓ 🅂	Line-2						シピ	
✓ M-	Line-3		Gen-1 Gen-	2 Gen-3	Gen-4 C	Gen-5 Ger	1-6 Gen-7	7 Gen-8
✓ M	Line-4		110 220 50 100	50	100	0 22 0 10	0 165 0 50	110
✓ M	Line-5		5 10 15 5 10 1	5 5 10 15	5 10 15	5 10 15 5 10	15 5 10 1	5 5 10 15
			Unbalanced condition alarm!	S Predicted threshold Gen-1, Gen-2, Ger	violation: I -3	Cause: Line-1 (Open phase	<u>Details</u> X

Power plant / substation equipment monitoring and diagnostics

Supplementary equipment monitoring/diagnostics system for

- Circuit breakers
 - Phases unsynchronized switching – basic equipment damage
 - Mechanical drive wear
 - Contacts failure etc.

Instrument transformers

- Significant measurement errors – protection and automation misoperation, metering errors
 - Connection failure
 - Windings failure
 - Secondary circuit isolation deterioration
 - Capacitor aging etc.

APDC-based WAMS in Eastern Europe Power System

APDC-based WAMS in Eastern Europe Power System

24 object APDC installations, 10 control center installations 3-month raw data storage

Experimental base

All applications under development are validated involving Real-time digital simulator (RTDS) system and the large Physical electrodynamic simulator:

- quality assessment
- performance tests
- IEEE C37.118 and IEC 61850 compliance tests

optimization

Physical electrodynamic simulator

- 8 simulators for DC transmission lines, converter substations
- 700 Pi-cells for transmission lines simulation and 150 power transformer simulators
- 80 synchronous machines with various power ratings
- 160 electric load nodes formed by the combination of asynchronous-motor, shunt and converter loads
- FACTS devices, controlled shunt reactors, static VAR compensators, series capacitor banks

Direct measurements of the synchronous generator load angle

Instantaneous state parameters measurements for the determination of dynamic properties

Current source signal and amplitude

The novel PMU

Generalized damping component calculation

≣GRT

Real Synchronous Generator

Rated value: 6.1 s

Derived value (average): 5.8

New power systems parameters recorder capabilities

Provides

Studies of the power systems dynamic properties

- Verification of the computational dynamic models
- Quick emergencies detection
- Power system conditions control against the angle
- Monitoring the synchronous generator load angle and its trend to assess the static and dynamic stability margins
- Determining the synchronous generators natural oscillations parameters in order to detect the resonance phenomena and prevent the machine self-swing

- Assessing the effectiveness of automatic control systems with automatic adjustment and faults self-recovery
- Developing a new generation control systems based on the real-time computational models variations based on the rules of FACTS control and dynamic properties of power systems
- Additional possibilities for generators monitoring (the air gap unevenness detection under the magnetic poles and the magnetic conductor asymmetry; the stator winding electric asymmetry detection, the rotor damper winding or field winding defects)

Power system equipment adaptive models

Conclusion

- PMU-based power plant monitoring system proposed allows:
 - Preventing equipment physical damage
 - Improving operation efficiency
 - Increasing economic benefits
- Innovative PMU designed provides:
 - Deeper insight into power system dynamic properties
 - Fast emergency detection
 - Possible development of equipment and power system adaptive models

www.grtcorp.com

Thank You GRT Corporation

www.facebook.com/grtcorp

www.twitter.com/grtcorp

Phasor measurements data applications

Target: Improving the reliability and stability of a power system through developing and advancing the methods of dispatch and automatic control

Developed applications

Factory Testing phase

Prospective applications

Electromechanical oscillations monitoring software Based on the automatic WAMS data acquisition system

Low-frequency oscillations monitoring implementation examples

- The dominant modes of the Eastern Europe Power System were determined based on analysis of 2013-2014 years daily data
- Local and interarea dominant modes were identified and the normal conditions low-frequency oscillations parametres were defined
- Power system facilities with undamped modes within 0.2÷2.1 Hz frequencies range were identified
- Low-frequency oscillations were identified for bulk power transit lines of up to tens MW magnitude
- Statistical analysis was accomplished determining the stability level for the power system
- The analysis was fulfilled for the forced low-frequency oscillations reaching the power system stability margin

APDC visualization means

No details sneak under the radar with full multi-display configurations support

APDC visualization means

Any platform, any device

System controllers operation monitoring system

- The primary objective is enhancing the stability of the generating equipment synchronous operation in the power system:
- adjustment of the automatic excitation control settings
- troubleshooting the synchronous generator excitation systems
- The typical faults/misoperation currently detected:
- Relay excitation forcing under emergencies in the power system
- Synchronous generator rotor oscillation damping at normal, repair and post-fault power system conditions
- Support for a stable synchronous generator operation at underexcitation (minimal excitation limiter) and over-excitation (maximal rotor current limiter) conditions

Factory acceptance test phase now

Unbalanced conditions monitoring

Unbalanced operation may lead to

- Increased power losses
- Rotor overheating
- Mechanical vibrations
- Voltage asymmetry
- Generator damage
 - Isolation abrasion and deterioration
 - Windings deformation and/or displacement
- Poor power quality

