PHASOR SIMULATION FOR OPERATOR TRAINING (PSOT)

DOE Grant Award DE-OE0000702

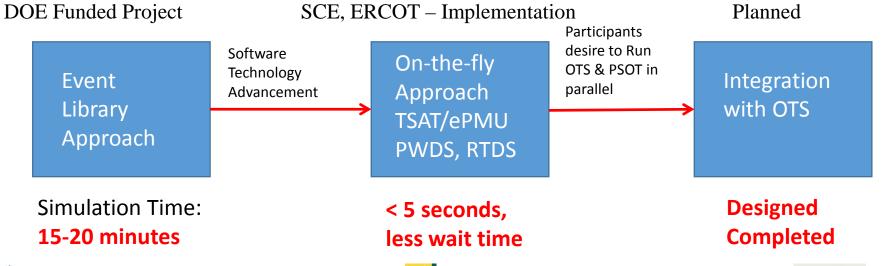
NASPI Presentation

Neeraj Nayak – Electric Power Group, LLC October 20, 2016

PSOT Project Participants

- Southern California Edison (SCE) Cost Share Participant
 - Project Manager Jun Wen/Armando Salazar
- Electric Reliability Council of Texas (ERCOT) Cost Share Participant
 - Project Manager Bill Blevins
- Electric Power Group, LLC Prime Contractor and Cost Share Participant
 - Project Manager Jim Dyer
- Powertech Labs Inc. Added to Project for Real Time Simulations with TSAT/ePMU
 - Project Manager Lei Wang

Topics to be discussed...


- PSOT Need and Background
- What is PSOT?
- PSOT Use Case Examples
- Training Methods
- PSOT Status and Next Steps for Training
- Web-based Synchrophasor Training for Operators and Engineers

PSOT Need and Background

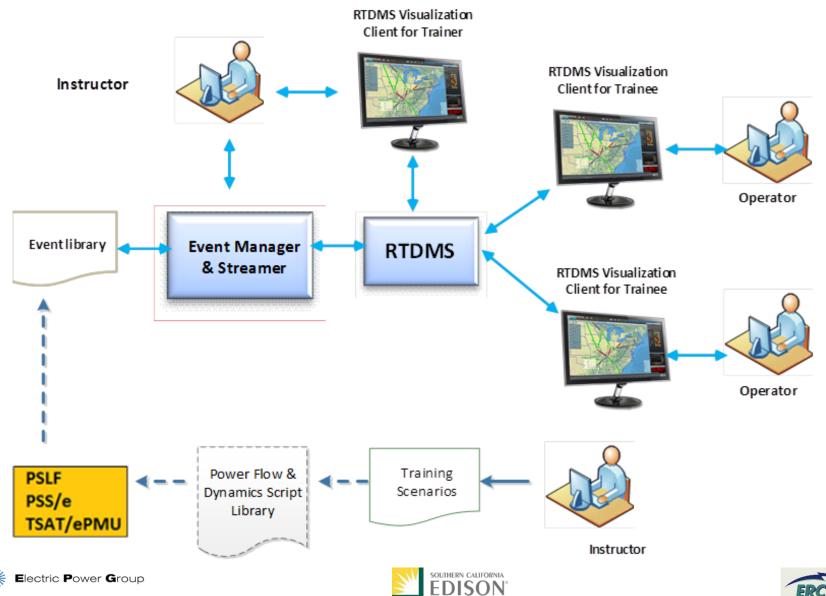
- Need for Operator Training identified by DOE and industry
- DOE issued an FOA in 2014 EPG PSOT Project Selected for Funding with SCE and ERCOT as Cost Share Partners
- Project Objectives Research, design, develop and demonstrate a pre-commercial phasorbased training simulator to train power system operators on the use of synchrophasor technology
- Project Completed PSOT Demonstrated and Implemented at SCE and ERCOT
- PSOT has progressed beyond original DOE Funded Project Scope

Electric Power Group

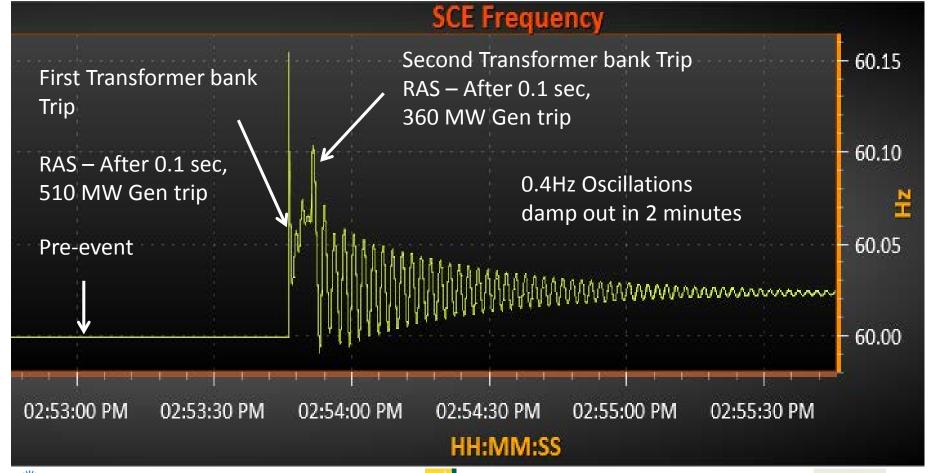
What is PSOT?

- A Phasor-based training simulator to train power system operators on the use of synchrophasor technology
- PSOT can be used for training using two approaches
 - Event Library Simulated or Recorded Events
 - On-the-Fly Simulations
- PSOT Components Include:
 - Industry Standard Power System Simulation Tools including PSLF, PSS/E,
 TSAT/ePMU for Off-Line; and TSAT/ePMU, Power World Dynamics Studio, RTDS,
 ePhasorSim for On-the Fly Simulations
 - Event Streamer and Library Manager
 - RTDMS for Visualization
- PSOT is now available commercially with a library of 10 events which can be expanded

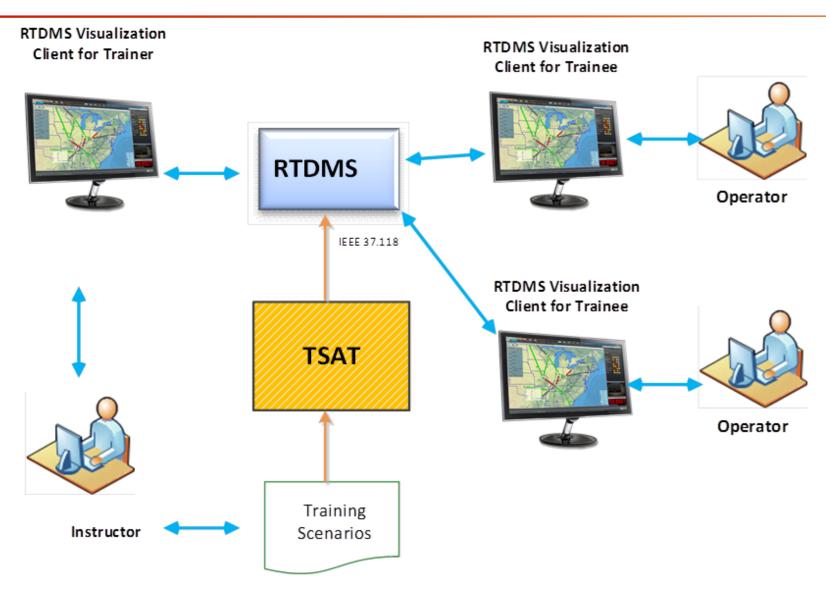
PSOT Use Case Examples


- Operator Training Event Library and On-the-fly
- Validate Alarm Threshold Settings for Use in real time operations NYISO
- Outage Planning Simulate and Validate Maintenance Plans SCE
- Test and Validate New Algorithms and Linear State Estimator
- Validate real-time actions prior to implementation

Starter Library - 10 Training Events with Corrective Actions


Training Event	Event Detection: Alarms	Event Diagnostics	System Violations	Corrective Actions
System Separation	Islanding popup notification, Over Frequency/Voltage in island	Fault+ Line Trip	Islanding, Over Frequencies/Voltages in island	Generation Trip, SVC Switch in
Loss of 2 parallel 500 kV lines	High Phase Angle Differences, High Power Flow	Fault + Line Trip	Line Overload, Phase Angle Differences Increase	1550 MW Load Drop
Loss of 3 parallel 500 kV lines	High Phase Angle Differences, High Power Flows, Low Voltages	Fault + Line Trip	Low Voltages, Line Overloads, Phase Angle Differences Increase	2625 MW Load Drop
Loss of 2 parallel 500 kV lines and generation drop	High Phase Angle Difference, High Power Flow	Fault + Line Trip	Line Overloads, Phase Angle Difference Increases	800 MW Generation Trip
Loss of Double circuit 345kV lines	Phase angle difference Alarm	Fault + Line Trips	Phase Angle Difference Increases	Reduce 900MW Wind Generation Reclose Relayed Lines
Loss of 2 500/230 kV Transformer Banks	High Phase Angle Difference, Low Damping Oscillations	Fault + Transformer Trip	Low Damping oscillations, Phase Angle Difference Increases	870 MW Generation Trip
Compound Event - Loss of 3 units and Loss of two 345 kV Lines	Phase angle difference Alarm & Instability Alert Popup	Generation + Line Trips	Frequency drops, Phase Angle Difference Increases	Drop 700MW Load Reclose Relayed Lines and Restore Dropped Load
Wind Farm Oscillations	Low Damping Alarm and Popup, High Rate of Change Alarms in Frequency, Voltage, Phase angle difference Alert	Oscillations Near Wind Power Plant	Low Damping < 1%, High Rate of Change in Frequency, Voltage and Phase Angle Difference	Curtail Wind Output below 40MW to reduce magnitude of Oscillations Restore correct Control Settings & Increase Wind Output
Hydro Unit Oscillations	Low Damping Alarm and Popup, High Rate of Change Alarms in Frequency, Current, Phase angle difference Alert	Oscillations near Hydro Power plant	Low Damping < 1%, High Rate of Change in Frequency, Current & Phase Angle Difference	Curtail Hydro Unit Output to reduce magnitude of Oscillations Restore correct Control Card & Increase Hydro Unit Output
N-3 & Wind Ramp Event	Phase angle difference Alarm, Low Frequency Alarm	Line Trips + Generation Trip + Wind Power Ramp	Frequency Drop, Phase Angle Difference increases significantly, Wind power output increases greatly	Curtail Wind Output

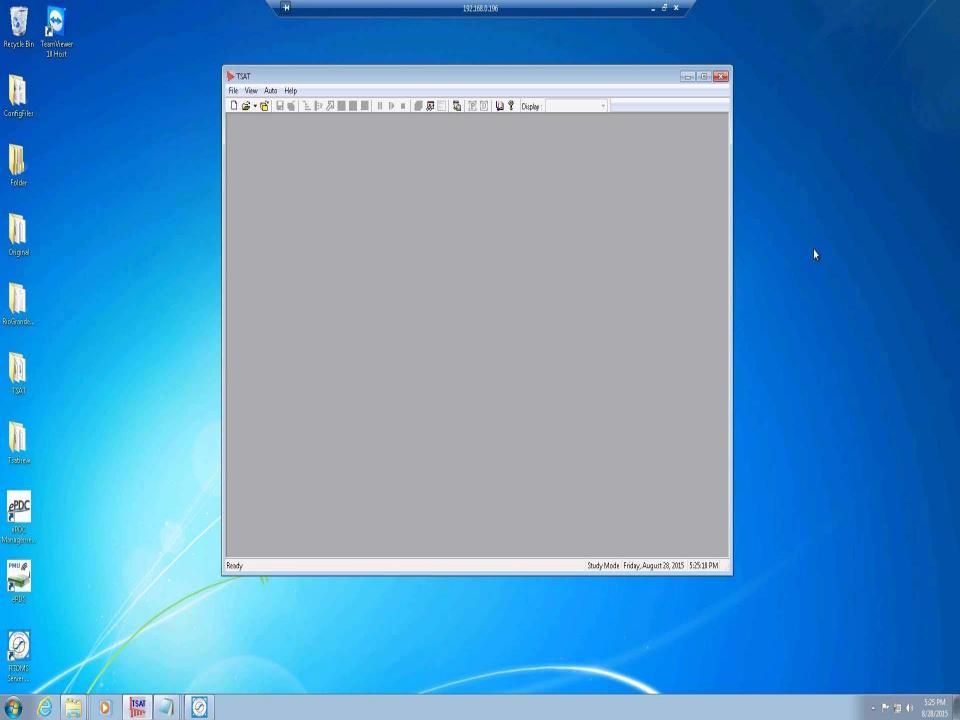
Event Library Method - Flow Diagram

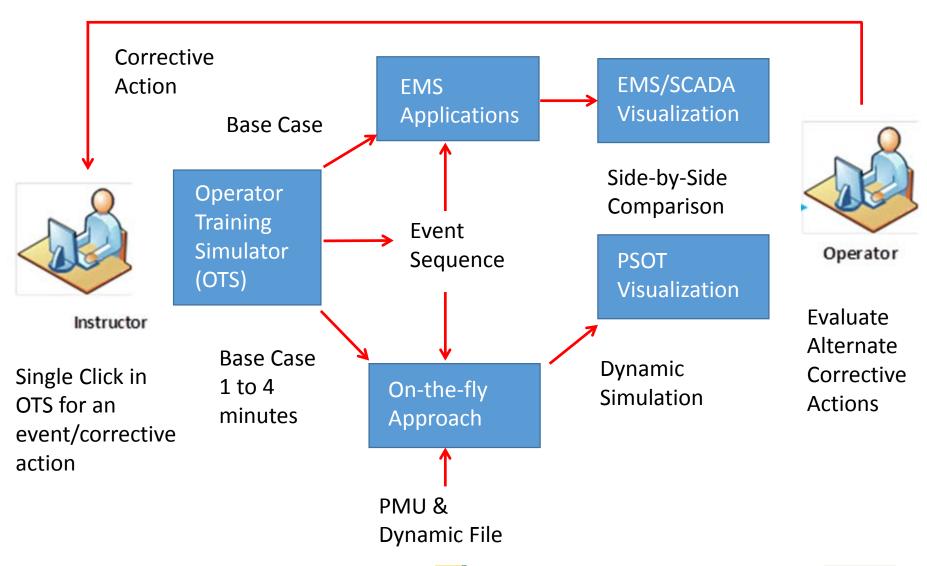

Event Library Method - **Example**

 Loss of two 500/230 kV Transformer Banks in SCE's High Desert Region

Electric Power Group

On-the-fly Method - Flow Diagram




On-the-fly Method - Example N-5 Event with Generator Trip, Line Trip, Load Drop, Restoration

	Time	Sequence	Status / Actions
1.	0-40 s	Pre-Event	System Frequency at 60Hz
2.	40 s	N-3 Units Trip	Loss of 650 MW of Generation
3.	100 s	Double 345 kV line fault (3-phase)	
4.	After 5 cycles	Fault Cleared	N-4 & 5 Events - Both 345 kV Lines Relay
5.	120 s	Drop 700 MW of Load	Corrective action taken
6.	140 s	Reclose Relayed Lines	System stable
7.	160 s	Restore 700 MW of Load	System recovers

PSOT Integration with OTS - Planned

Electric Power Group

PSOT - Status and Additional Technologies for Training

- PSOT Developed, Demonstrated, Integrated and Implemented at SCE and ERCOT – Adopted by Training Departments
- State of the Art Advanced from Initial Event Library Concept to Real Time On-The-Fly approach
- PSOT Use Cases Expanding
 - Operator Training Event Library and On-the-fly
 - Validate Alarm Threshold Settings for Use in real time operations NYISO
 - Outage Planning Simulate and Validate Maintenance Plans SCE
 - Test and Validate New Algorithms and Linear State Estimator
 - Validate real-time actions prior to implementation
- PSOT Now Commercially Available with 10 Library Events
- Additional Technologies
 - Web-based Synchrophasor Training Portal Developed for Operator Training
 - Integration with OTS Planned

Introduction to Synchrophasors Course Available on EPG's Training Portal

- Foundational Course On Phasor Technology with 5 Sessions
 - 1. Synchrophasor Fundamentals Ken Martin
 - 2. Synchrophasor Metrics Use in Real Time Operations Wayne Schmus
 - 3. Phase Angle Differences How can they used in Operations? Jim Dyer
 - 4. Grid Event Signatures Use to detect and diagnose grid events Prashant Palayam
 - 5. Power System Oscillations Types, Causes and Monitoring Kevin Chen
- Each session is 1 hour Video based, includes on-line quizzes, access via internet
- Flexible (24x7), reduces training costs
- Designed for Operators, Engineers, Planners, Trainers, Field Personnel
- Additional Courses in Development

Introduction to Synchrophasors and EPG_116487_Online_Introduction_to_Synchrophasors is recognized by the North American Electric Reliability Corporation as an approved learning activity for which 5.00 NERC CEHs can be awarded, and Electric Power Group adheres to CE Program Criteria.

Thank You & Any Questions?

Jim Dyer – Director dyer@electricpowergroup.com

Prashant Palayam palayam@electricpowergroup.com

Neeraj Nayak nayak@electricpowergroup.com

Iknoor Singh singh@electricpowergroup.com

http://www.electricpowergroup.com/psot.html

201 S. Lake Ave., Suite 400 Pasadena, CA 91101 Tel 626.685.2015

