

A Software Tool for Real-Time Prediction of Potential Transient Instabilities using Synchrophasors

Dinesh Rangana Gurusinghe Yaojie Cai Athula D. Rajapakse

International Synchrophasor Symposium

March 25, 2016

Outline

- Introduction
- Transient Stability Status Prediction Algorithm

- Laboratory-Scale Hardware Setup
- Test Results
- Conclusion

Introduction

- Transient instability: Loss of synchronism of a generator or group of generators after a severe disturbance.
- A very fast phenomenon Generators can potentially lose the synchronism within a few seconds after the disturbance.
- If transient instability can be recognized in advance, emergency control actions can be initiated to prevent it or minimize its impact.
- Common practice is to provide controls referred as special protection systems (SPSs),
 - Event based control actions designed through offline system studies
 - Could become complicated as the power system expands
- Alternative is the response based emergency control based on synchrophasor measurements.

Preceding work

- Rotor Angle Instability Prediction using Post-Disturbance Voltage Trajectories
 - A. D. Rajapakse, F. Gomez, K. Nanayakkara, P. A. Crossley, and V. V. Terzija IEEE Transactions on Power Systems, Vol. 25-2, May 2010.
 - Fuzzy C-means clustering, template matching & support vector machine classification
- Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction using Synchronized Measurements
 - F. R. Gomez, A. D. Rajapakse, U. D. Annakkage, and I. T. Fernando IEEE Transactions on Power Systems, Vol.26-3, Aug 2011.
 - Support vector machine classification
- Post-Disturbance Transient Stability Status Prediction using Synchrophasor Measurements
 - D. R. Gurusinghe and A. D. Rajapakse IEEE Transactions on Power Systems, Early Access, 2016.
 - Phase plane of voltage magnitudes

- Implement the recently developed transient stability status prediction algorithm [1], [2] in a real-time software tool ($P_{haeor} = \sqrt{2}$) and validate its performance through hardware in the loop simulations.
- [1] D. R. Gurusinghe and A. D. Rajapakse, "Post-disturbance transient stability status prediction using synchrophasor measurements," *IEEE Transactions on Power Systems* (early access), 2016.
- [2] D. R. Gurusinghe, A. D. Rajapakse, D. Ouellette and R. Kuffel, "An application of wide area synchrophasor based transient stability status prediction," presented at The North American Synchrophasor Initiative (NASPI 2015), San Mateo, CA, USA, Mar. 2015.

Concept of the Proposed Technique

One machine to infinite bus (OMIB) system with the initial steady-state power flow solution

Introduction Transient Stability Status Prediction Algorithm PhasorEye Software Tool

Concept of the Proposed Technique

Variations of rotor angle and voltage magnitude following a fault

ntroduction

Transient Stability Status Prediction Algorithm *PhasorEye* Software Tool

Concept of the Proposed Method

Plot of ROCOV vs. ΔV following a fault

ntroduction

Transient Stability Status Prediction Algorithm *PhasorEye* Software Tool

Implementation of Algorithm

- Off-line design
 - 1. Identification of contingencies that makes generator marginally unstable through off-line dynamic simulations.
 - 2. Determination of stability boundary for each generator
- Real-time operation
 - 1. Detection of severe disturbances and triggering the transient stability status prediction algorithm.
 - 2. Prediction of transient stability status, and trigger emergency control actions

- Developed at the intelligent Power Grid Laboratory of the University of Manitoba, Canada as a tool for testing synchrophasor applications
 - Implement synchrophasor application programs using an output data stream from a PDC
 - Check the availability of real-time data stream, determine the data configuration and connect.
 - Display/plot selected phasors with geographical information.
 - Record an event log, and save data for a specified duration upon triggered by an event specified by the user.
 - Retrieve and plot recorded data
 - Applications: Transient stability monitoring, line parameter estimation, oscillation monitoring

PhasorEye Software Tool

Features of PhasorEy

PhasorEy	•	- 🗆 ×
Connection Status	G ○ - Connection Information	
Analysis Tools	IP Address: 192.168.100.80 Port: 4719 ID: 2 Stop Display Window Size: 600 Data Points	
View Event Log	Staton Name: Gen30 ▼ PHASOR CH 1:V1 ▼ Gen30 Gen30 Gen30	Refresh
Return Home	Frequency : 59.995 Hz ROCOF : 0.0001 Hz/s Gen31 Frequency : 59.995 Hz ROCOF : 0.0001 Hz/s Gen32 Frequency : 50.005 Hz ROCOF : 0.0001 Hz/s	
	Gen33 Frequency : 59.995 Hz ROCOF : 0.0001 Hz/s Gen34 Frequency : 59.995 Hz ROCOF : 0.0001 Hz/s	
	Gen35 10000 Frequency : 59.995 Hz ROCOF : 0 Hz/s Gen36 8000	
	90 Degree 6000	
	4000	
	Degree Degree 2000	
PGD	0 270 Degree (2016 / 3 / 16 / 18 / 30 / 52.116ť	(2016 / 3 / 16 / 18 / 31 / 2.9)
Power Grid Laboratory	Version: 1.5 Intelligent Power Grid Laboratory - University of Manitoba	Online Recording Off

Transient Stability Status Prediction Algorithm *PhasorEye* Software Tool Laboratory-Scale Hardware Setup

PhasorEye Software Tool

Features of PhasorEy

Transient Stability Status Prediction Algorithm PhasorEye Software Tool

Laboratory-Scale Hardware Setup

PhasorEye Software Tool

PhasorEy	×
17:33:17 PIVI - 5/10/2010	Program Ended
17:55:43 PM - 3/16/2016	Start Logging
17:56:31 PM - 3/16/2016	Program Ended
17:57:26 PM - 3/16/2016	Start Logging
18:00:38 PM - 3/16/2016	Start Logging
18:02:24 PM - 3/16/2016	Program Ended
18:03:54 PM - 3/16/2016	Start Logging
18:05:29 PM - 3/16/2016	Program Ended
18:05:47 PM - 3/16/2016	Start Logging
18:06:29 PM - 3/16/2016	Program Ended
18:06:51 PM - 3/16/2016	Start Logging
18:08:24 PM - 3/16/2016	Program Ended
18:08:44 PM - 3/16/2016	Start Logging
18:16:25 PM - 3/16/2016	Start Logging
18:25:36 PM - 3/16/2016	Program Ended
18:26:56 PM - 3/16/2016	Start Logging
18:36:25 PM - 3/16/2016	Open Log Window
Version: 1.5 Intellig	ent Power Grid Lab

Laboratory-Scale Hardware Setup

PhasorEye Software Tool Laboratory-Scale Hardware Setup Real-Time Simulation Results

Laboratory-Scale Hardware Setup

15

Simulation Results : IEEE 39-Bus Test System

iPGLSynchro Software Tool Real-Time Simulation Results Conclusion

Real-Time Simulation Results

16

Simulation Results : Stable Case

PhasorEy		- 🗆 ×			
	GO-				
Connection Status	Transient Stability Status Prediction Configruation				
-	Station Information				
Analysis Tools	Station Name: Gen30 Voltage: PHASOR CH 1:V1 Current: PHASOR CH 1:V1 V				
View Event Log	Boundary Information Stability Boundary - First Point { X: -0.11 , V: 0.00 } Second Point { X: -0.04 , V: -0.35 } Base Voltage : 13.2 kV				
Return Home	Monitor				
	Gen36 (PHASOR CH 1:V1 /PHASOR CH 1:V1) (2) Gen35 (PHASOR CH 1:V1 /PHASOR CH 1:V1) (2)				
	Gen34 (PHASOR CH 1:V1 /PHASOR CH 1:V1) 🗵 Gen33 (PHASOR CH 1:V1 /PHASOR CH 1:V1) 🖲	26			
	Gen32 (PHASOR CH 1:V1 /PHASOR CH 1:V1) 🕢 Gen31 (PHASOR CH 1:V1 /PHASOR CH 1:V1) 🖲				
	Gen30 (PHASOR CH 1:V1 /PHASOR CH 1:V1)				
	Fault Detected : (2016 / 3 / 18 / 13 / 40 / 40.833333)				
	Fault Cleared : (2016 / 3 / 18 / 13 / 40 / 40.933333)	A AL			
	Time : (2016 / 3 / 18 / 13 / 41 / 26.933333)				
	Stability Boundary : First point {-0.11,0} Second point {-0.04, -0.35}	"/~ / A A A			
	Voltage (PHASOR CH 1:V1) : 13306.16 < 19.59				
	Current (PHASOR CH 1:V1) : 13306.16 < 19.59 Counter : 5917	1. John Martin			
		and the second s			
PGD					
Intelligent Power Grid Laboratory	Version: 1.5 Intelligent Power Grid Laboratory - University of Manitoba Offline	Recording Off			

Real-Time Simulation Results

Simulation Results : Stable Case

iPGLSynchro Software Tool Real-Time Simulation Results Conclusion

Real-Time Simulation Results

18

Simulation Results : Unstable Case

PhasorEye			- <u> </u>
	30.		
Connection Status	Transient Stability Status Prediction Configruation		
Analysis Tools	Station Information Station Name: Gen30 Voltage: PHASOR CH 1:V1	Current: PHASOR CH 1:V1 V	
View Event Log	Boundary Information Stability Boundary - First Point { X: -0.11 ,Y: 0.00 } Base Voltage : 13.2 kV	Second Point { X: -0.04 ,Y: -0.35 }	
Return Home			Monitor
	Gen36 (PHASOR CH 1:V1 /PHASOR CH 1:V1) € Gen34 (PHASOR CH 1:V1 /PHASOR CH 1:V1) €	Gen35 (PHASOR CH 1:V1 /PHASOR CH 1:V1) Gen33 (PHASOR CH 1:V1 /PHASOR CH 1:V1)	
	Gen32 (PHASOR CH 1:V1 /PHASOR CH 1:V1)	Gen31 (PHASOR CH 1:V1 /PHASOR CH 1:V1)	
	Gen38 (PHASOR CH 1:V1 /PHASOR CH 1:V1) (8)	Gen37 (PHASOR CH 1:V1 / PHASOR CH 1:V1)	
PGD	Fault Detected : (2016 / 3 / 18 / 13 / 1 / 28.316667) Fault Cleared : (2016 / 3 / 18 / 13 / 1 / 28.45) Stability Status : Unstable (2016 / 3 / 18 / 13 / 1 / 29.05) Voltage Magnitude = 7465.30763913649 V Previous Data Voltage Magnitude = 7465.30763913649 V Voltage Base = 13200 V ROCOV = 0 Pu/s Voltage Deviation = -0.434446390974509 Pu		
Intelligent Power Grid Laboratory	Version: 1.5 Intelligent Power Grid Laboratory - University of	Manitoba	Online Recording Of

Real-Time Simulation Results

Simulation Results : Unstable Case

iPGLSynchro Software Tool Real-Time Simulation Results Conclusion

Real-Time Simulation Results

Conclusion

- A synchrophasor based transient stability status prediction algorithm was implemented in a standalone software tool.
- The effectiveness and practical implementation aspects of the transient stability prediction algorithm was evaluated in a laboratory scale test setup with the RTDS[™] simulator.
- We hope to present how the transient stability predictions can be used to initiate emergency control actions in a future NASPI meeting.
 - Load shedding
 - Generator shedding
 - HVDC control

Q&A