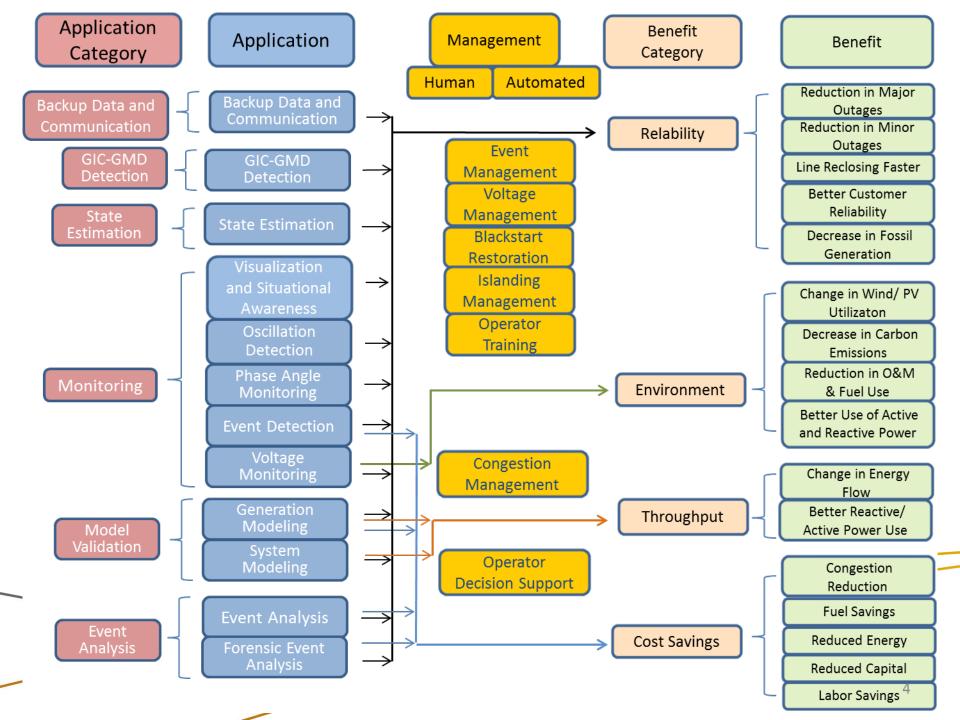
The Value Proposition for Synchrophasor Technology: Itemizing and Calculating the Benefits From Synchrophasor Technology

Alison Silverstein, Dr. Mark Weimar, Joseph Petersen October 14, 2015

North American Synchrophasor Initiative Work Group Meeting, October 14-15, 2015


Synchrophasor Benefits Framework

- Approach to the framework
 - Classes of benefits
 - Quantify metrics and benefits
 - Show examples and calculations
- Reliability & resiliency benefits
- Cost savings and efficiency benefit
- Grid throughput and efficiency benefits
- Environmental and policy benefits
- Scaling from annual to longer cycle benefits
- New NASPI Technical Report on the Synchrophasor Value Proposition at https://www.naspi.org/File.aspx?fileID=1571

Approach to framework

- Benefits occur from multiple applications in combination, not one-by-one
- Risk of double-counting benefits
- Active use of synchrophasor data required for benefits to be realized
- Some benefits may be hard to quantify
- Following diagram illuminates the approach

Reliability and Resiliency – Metrics and Benefits

Fundamental benefits about reducing the odds and consequences of outages, so look at how synchrophasor technology affects:

- Number of major and minor outages that occur
- Number of customers affected
- ► Duration of those outages
- ► Customers' financial value of the outages
- ►Two approaches
 - Estimating impact of each component
 - Using relationship of transmission to distribution outages to calculate impact

Reliability and resiliency benefits (cont'd)

- Benefits will be area-specific
 - Probability, causes and lengths of outages in each area without synchrophasor technology use
 - Numbers and types of customers
 - How could your uses of synchrophasor technology affect the occurrence and duration of outages?

How synchrophasor technology could enhance reliability and resiliency

- Better wide-area situational awareness and applications to prevent outages and cascading failures
- Fewer equipment failures
- Faster service restoration
- Faster line reclosing
- Faster generator synchronization
- Faster black-start restoration
- Faster island resynchronization
- Faster forensic analysis and lessons learned implementation
- Back-up network and data source for SCADA failure

NERC – Reliability standards using synchrophasors

Synchrophasor technology can be used to improve performance and establish compliance with at least seven NERC reliability standards

Standard	Title	Status
Number		
BAL-003-1	Frequency Response and Frequency Bias Setting	Subject to Enforcement
FAC-001-2	Facility Interconnection Requirements	Subject to Enforcement
IRO-003-2	Reliability Coordination – Wide-Area View	Subject to Enforcement
MOD-026-1	Verification of Models and Data for Generator Excitation	Subject to Enforcement
	Control System or Plant Volt/Var Control Functions	
MOD-027-1	Verification of Models and Data for Turbine/Governor and	Subject to Enforcement
	Load Control or Active Power/Frequency Control Functions	
MOD-033-1	Steady-State and Dynamic System Model Validation	Subject to Enforcement
PRC-002-2	Disturbance Monitoring and Reporting Requirements	Approved, pending
		enforcement

Source: Information provided by Ryan Quint, NERC, September 2015

Cost savings and efficiency metrics

- Less transmission congestion (MWh and \$ value)
- Labor cost reductions (time and \$)
 - Forensic analysis
 - Model validation
 - Fault location
 - Detecting equipment failure before catastrophic failure
 - Equipment commissioning
- Capital deferral and avoidance savings
- Standards compliance

Grid efficiency and throughput benefits

- Congestion management
 These are hard to quantify:
- Better voltage and reactive power management
- Line loss reduction

Environmental and policy benefits

- Increased delivery and use of renewable generation
 - From better power plant models, voltage stability, oscillation monitoring, state estimation, congestion management, dynamic line ratings, automatic operation of transmission assets, etc.
- Valuing incremental renewable generation
 - Identify an incremental percentage of renewable generation enabled by synchrophasor technology
- Fossil fuel offset by renewables
- Emissions reduction offset by renewables

Aggregating benefits over time

- Factors affecting the calculation of project benefits
 - Operational impacts significant in early years, level out as technology matures
 - Benefits from transmission-level synchrophasors may decrease with more customer-level energy efficiency, DG and storage
 - Create a baseline without synchrophasor technology and compare to the alternative with synchrophasors
- Net present value for time stream of financial benefits; sum up or discount non-monetary benefits

Conclusions

- Benefits from synchrophasor technology arise from actively using combinations of applications
- Identified benefits and where possible estimated values for:
 - Resiliency and reliability (outage #, duration, customers affected, value of customer service)
 - Cost savings (time and \$)
 - Grid efficiency and throughput (MWh, energy cost)
 - Environmental (mostly renewable) impacts (MWh, emissions
- Provided methodology to quantify and estimate project benefits

Find "The Value Proposition for Synchrophasor Technology: Itemizing and Calculating the Benefits from Synchrophasor Technology Use" is on the NASPI website at:

https://www.naspi.org/File.aspx?fileID=1571

