Dynamic State Estimation Based Protection (a.k.a. setting-less protection)

Sakis Meliopoulos, Ga Tech Bruce Fardanesh & George Stefopoulos, NYPA Paul Myrda, EPRI

International Synchrophasor Symposium Atlanta, Georgia, March 22-24, 2016

The Setting-Less Protection Method

<u>=06</u>

DSE Motivation: In Search of Secure Protection

Setting-less Protection has been **inspired** from Differential Protection which: (a) has minimal settings and (b) does not require coordination with other functions

Analytics: Dynamic State Estimation (systematic way to determine observance of physical laws)

Dynamic State Estimation

Given the dynamic model of a system:

And a set of measurements at times t, t+h, t+2h, ...

Compute the best Estimate of the System State at times t, t+h, t+2h, ...

$$\mathbf{i}(t) = Y_{eqx1}\mathbf{x}(t) + D_{eqxd1}\frac{d\mathbf{x}(t)}{dt} + C_{eqc1}$$
$$0 = Y_{eqx2}\mathbf{x}(t) + D_{eqxd2}\frac{d\mathbf{x}(t)}{dt} + C_{eqc2}$$
$$\vdots$$
$$0 = Y_{eqx3}\mathbf{x}(t) + \begin{cases} \mathbf{x}(t)^T \left\langle F_{eqxx3}^i \right\rangle \mathbf{x}(t) \\ \vdots \end{cases} + C_{eqc3}$$

We have developed three algorithmic approaches which provide similar results:

- UCWLS (Un-Constraint Weighted Least Squares): Treat actual measurements, virtual, derived and pseudo as data with certain uncertainty
- CWLS (Constraint Weighted Least Squares): Treat virtual measurements as constraints

GeorgiaInstitute **Myserda** 2 NewYorkPower EPC

ontrol and

• EKF (Extended Kalman Filter): Use Predictor-Corrector algorithm

Implementation Overview: Data Flow

- The Component is represented with a set of Differential Equations (DE). Measurements from legacy instrumentation or MUs.
- The Dynamic State Estimator fits the Streaming Data to the Dynamic Model (DE) of the Component. Protection Logic based on DSE results.

ELECTRIC POWER

RESEARCH INSTITUTE

NewYorkPower EPEI

• Object Oriented Implementation

Software Implementation Overview – User Interface

NewYorkPower CPCI

ELECTRIC POWER

RESEARCH INSTITUTE

Dynamic State Estimation – Required Speed

RESEARCH INSTITUTE

GeorgiaInstitute

of Technology

Control and

Automation Lab

Laboratory Implementation

Experimental Setup Block Diagram

Experimental Setup

- Simulator / PC driven D/A Hardware (32 Chan.)
- Omicron Amplifiers (6)

GeorgiaInstitute

of Technology

- GE Hardfiber Merging Units (2)
- Reason MU (1)
- Siemens MU (2)

Power System

Automation Lab

Control and

- Protection PC with Optical Network
 Interface & IRIG-B Receiver
- Arbiter GPS Clock with IRIG-B output

New York Power

Planned Field Demonstrations

<u>=05</u>

erda 2 New York Power

Field Demonstration on NYPA System

EPR

RESEARCH INSTITUTE

GeorgiaInstitute

Energy Innovation Solutions

of Technology

Control and

Automation Lab

BC

NewYorkPower Authority

2

Conceptual Implementation on a 765/345/13.8 kV Autobank

ELECTRIC POWER

RESEARCH INSTITUTE

Selected Hardware

2 ELECTRIC POWER

RESEARCH INSTITUTE

Power System Control and **Automation Lab**

GeorgiaInstitute

of Technology

Setting-Less Protection MSU Line Testing

<u>=06</u>

Laboratory Setup for Demonstration

NewYorkPower

Energy Innovation Solutions

EPR

MSU Line Internal Fault

Fault Description

- Fault occurs at t = 29.94 s
- Phase A to Neutral fault
- 50 miles from MASSENA

Measurements

 Three phase voltages and currents at both terminals of line

_

Authority

RESEARCH INSTITUTE

GeorgiaInstitute

of Technology

Control and

Automation Lab

Setting-Less Protection AutoBank 1 Testing

-06

AutoBank Terminal High Impedance Fault

Marcy Substation

ELECTRIC POWER

RESEARCH INSTITUTE

GeorgiaInstitute

of Technology

Control and

Automation Lab

AutoBank Terminal High Impedance Fault

NewYork Power

\uthoritv

ELECTRIC POWER

RESEARCH INSTITUTE

GeorgiaInstitute

of Technology

- **New Method Based on Sampled Values**
- Sub-millisecond Fault Detection
- **Best Implementation with Merging Units**
- **GPS Synchronization is a Requirement**
- Much more Sensitive than Legacy Methods
- **No Coordination Need with Other Functions**

Acknowledgements

The support of **EPRI**, **NYSERDA**, **PSERC**, and the cost-sharing partner **NYPA** is greatly appreciated

ELECTRIC POWER RESEARCH INSTITUTE

NewYork Power

