SYNCHROPHASOR STANDARDS

North American Synchrophasor Initiative Atlanta, GA

March 22, 2016

Ken Martin

Overview of Synchrophasor Standards

- History of synchrophasor standard development
- Review of communication standards
- Review of measurement standards
- Test and certification

Standards for Synchrophasors

IEEE 1344-1995

- First standard
- Included measurement and communication

IEEE C37.118-2005

- Replaced IEEE 1344
- Included performance requirements for measurement
- Communication adaptable to networks
- Basis for current methods and standards

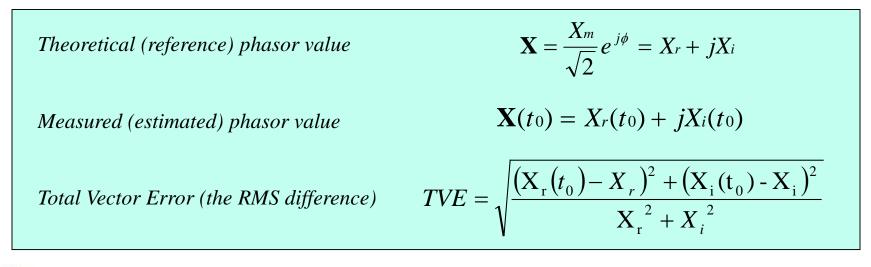
C37.118-2005 Communication

Message transfer protocol

- Command frame
 - Start/stop data, send other information
- Data frame
 - Phasor, frequency, other measurements
- Configuration frame
 - Describes data frame, with scaling & naming
- Header frame
- Can be used with serial, network, or other system
 - Widely used with standard IP protocol (TCP-UDP/IP)

Commands

Data, Configuration, Header



C37.118-2005 measurement

- Measurement requirements
 - Phasor measurement accuracy over range of V, I, ϕ , & F
 - Rejection of harmonics and out of band signals (anti-aliasing)
 - Basic compliance test is TVE
- Steady-state conditions
- No frequency or ROCOF requirements

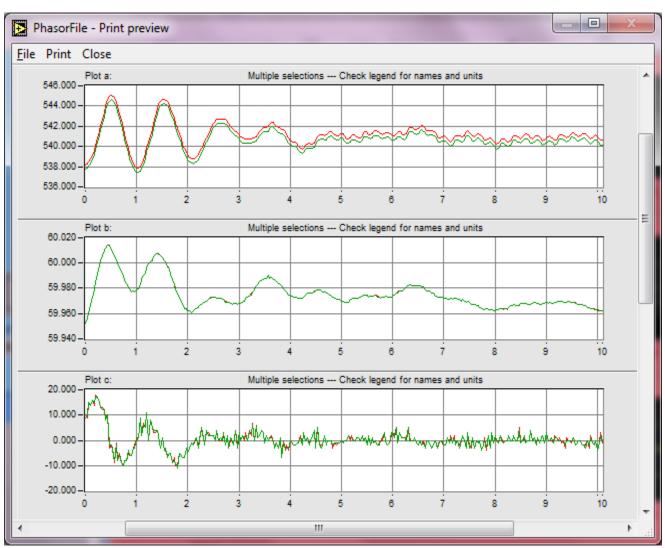
C37.118 split into two Standards

- Simplify further development & coordinate with IEC standards
- Synchrophasor Measurement
 - C37.118.1-2011
 - Add frequency & rate of change of frequency (ROCOF) requirements
 - Add performance under dynamic conditions
 - C37.118.1a amendment
 - Modify requirements for practical considerations
 - IEC 60255-118-1
 - Currently under development, based on C37.118.1a
- Phasor data communication
 - IEEE C37.118.2-2011
 - Compatible extension of 2005 standard
 - IEC 61850-90-5
 - Extension based on established practices

Standard IEEE C37.118.1-2011

- Principal changes added requirements for:
 - Frequency and & ROCOF measurements
 - Measurement under dynamic operating conditions
- Two classes of performance M & P class
- Operation under multiple reporting rates required
- Steady-state measurement
 - Accuracy over frequency, amplitude, angle, & temperature ranges
 - Rejection of interference aliasing & harmonics
- Measurement requirements under dynamic conditions
 - Measurement bandwidth of both phase and amplitude
 - Tracking under frequency ramp
 - Response time for amplitude and phase step changes
- Tests apply to phasors, frequency, & ROCOF measurements

Issues with C37.118.1-2011


- Main difficulty is frequency & ROCOF measurement
 - New requirements most previous implementations inadequate
 - Interference & harmonics rejection insufficient
- For F & ROCOF error is amplified by differentiation
 - Given phasor $Ve^{\varphi t}$
 - $F = d\varphi(t) / dt$
 - ROCOF = dF/dt = $d^2\varphi(t) / dt^2$
- Also some difficulty with exclusion for ramp, latency definition & other details

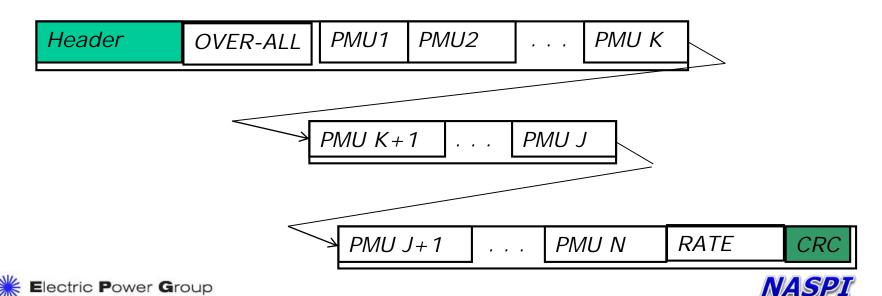
Noise in Frequency & ROCOF

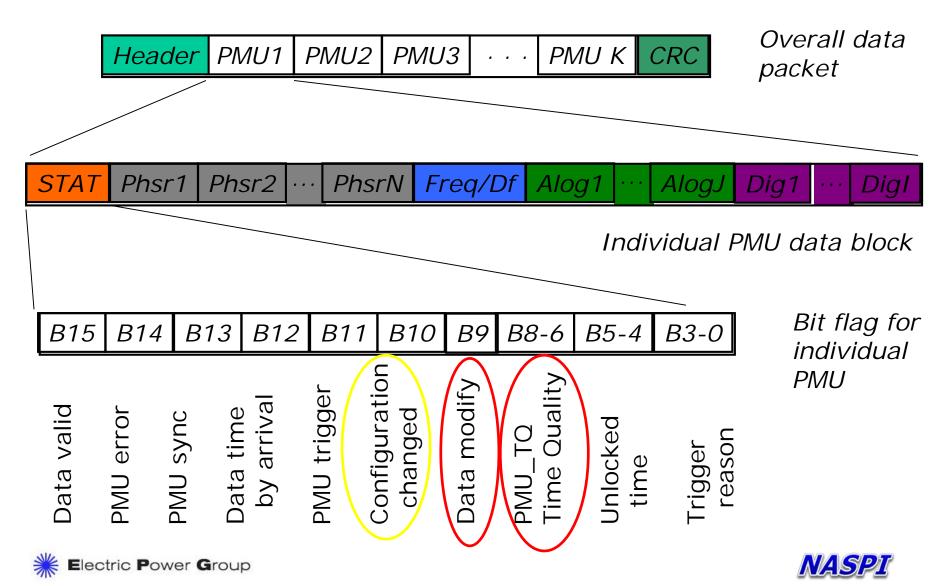
- Voltage measurement shows normal variations in signal
- Frequency shows similar activity but with a little apparent noise
- ROCOF follows swing but signal dominated by noise

Changes made by Amendment

- Corrects some wording errors
- Relax some Frequency & ROCOF requirements
 - Harmonic & out-of-band, suspend ROCOF
 - Key modulation to bandwidth
 - Ramp tests
- Longer ramp test exclusion
- Longer step test compliance for all measurements
- Latency definition clarified, longer allowance
- Annex C longer M-class filter, align F & ROCOF

IEEE standard C37.118.2 - 2011


- Compatibility maintained
 - All 2005 implementations compatible
 - 2011 implementation transparent to 2005 version
- Corrections and clarifications made
 - PMUID identifies stream not source PMU
- New features
 - New expanded config message
 - Reserved bits in STAT word used for time quality


New configuration message – config3

- Message extensible to multiple frames (previous limit one 64K frame)
 - Necessary for large data sets
- Variable length names up to 254 bytes (previous limit 16 bytes)
 - UTF-8 encoding (includes all languages)
- Scaling extended for phasors & analogs
 - Full mX + b scaling
- More measurement description
 - PMU location
 - PMU measurement parameters

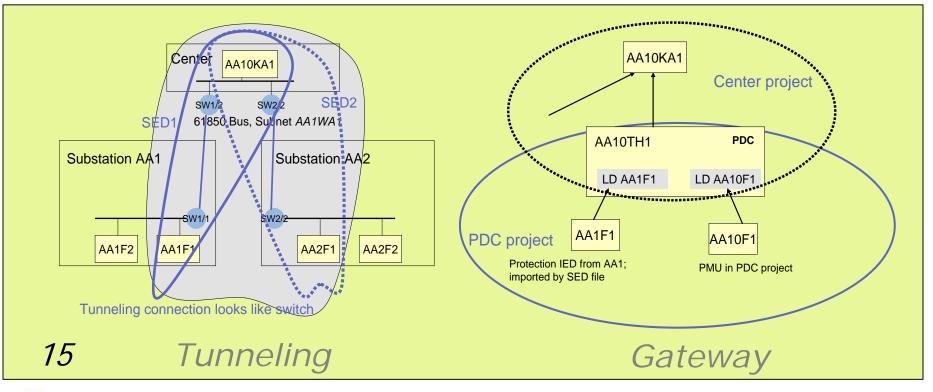
STAT word changes – data packet

Bits 6-8 now PMU_TQ, bit 9 data modify flag

IEC 61850 communication

- Substation configuration & control
 - IEC TC57, WG10
 - Takes advantage of
 - Proliferation of Intelligent Electronic Devices (IED)
 - Wide bandwidth network communications
- Primary focus is substation automation
- Now increasing scope to include wide area
 TR 61850-90-5 for synchrophasors

90-5 key features


- Profile mappings
 - A-profile & T-profile
 - Control block modifications
 - Conversions between 37.118 & std 61850
- Extensions for new classes & LNs
 - ROCOF data object added
 - LTIM logical node class (leap second time)
 - Performance classes assigned
- Security concerns and methods discussed
 - Includes E-to-E integrity, key distribution, other issues
 - Uses methods developed under 62351
- Application of security optional use where required

90-5 key features - modeling

- Communication requirements set
 - Tunneling & gateway approach for PDC
 - Modeling considerations for both approaches
- Sample Values (SV) extended for routability

MAS

IEC/IEEE 60255-118-1

- Work started January 2014
- First CD issued March 2016
- Started with C37.118.1 including amendment
- Make needed changes, but no more
 - Simplify testing where possible
 - Reduce required reporting rates
 - Eliminate all environmental requirements
 - Only test one class & one system frequency
 - Restated basic definitions
 - Clarified requirements as needed
- Hope to complete both IEC and IEEE approvals by end of 2017

Additional Standards & Guides

- IEEE C37.244-2011 : PDC guide
 - Guide to terminology & operation of Phasor Data Concentrators
- IEEE PC37.247 : PDC standard
 - Standardizes requirements from concepts in C37.244
 - Expect completion in 2016
- IEEE C37.242-2011 : Guide for synchronization, measurement, installation, and testing of PMUs
 - Covers the environment in which the PMU will be operating
 - Provides details for certification testing of the PMU
 - Is currently being updated to cover the new standard requirements
- IEC 60255-24/IEEE C37.111 : COMTRADE standard
 - File format for recorded measurement data
 - Complete profile for use with phasor data

PMU test & certification

- Certifying organization to assure all testing is comparable
 - Qualify testing laboratories
 - Create testing procedures
 - Examine testing results
 - Certify products
- IEEE Conformance Assessment Program (ICAP)
 - Sponsored by IEEE
 - Participation by many standards labs
- Other certifying bodies may be formed as well

Summary

- First standard, IEEE 1344 1995
- C37.118 in 2005
 - Set the basic concepts we use today
 - Performance verification- TVE
 - Communication methods
- C37.118.1 for measurements
 - Adds dynamic measurement requirements
 - Includes Frequency & ROCOF
- C37.118.2 Communication similar to that set in 2005
- 61850-90-5 integrated communication
- Joint standard IEC/IEEE 60255-118-1 developing

Thank you

