

Secure Dynamic State Estimation Using PMU data under Model Uncertainty and Cyber Attacks

Junjian Qi¹

A joint work with Jianhui Wang $^{\rm 1}$ and Ahmad F. Taha $^{\rm 2}$

¹Energy Systems Division, Argonne National Laboratory

²University of Texas at San Antonio

Funded by DOE Cybersecurity of Energy Delivery Systems (CEDS)

March 24, 2016

Outline

2 Challenges

Dynamic State Estimation

Discrete-time nonlinear system

$$\begin{cases} \boldsymbol{x}_k = \boldsymbol{f}(\boldsymbol{x}_{k-1}, \boldsymbol{u}_{k-1}) + \boldsymbol{q}_{k-1} \\ \boldsymbol{y}_k = \boldsymbol{h}(\boldsymbol{x}_k, \boldsymbol{u}_{k-1}) + \boldsymbol{r}_k \end{cases}$$

Dynamic state estimation:

given x_{k-1} and y_k , estimate x_k

- For power systems:
 - ► *x*: internal states of generators
 - y comes from synchrophasors

Challenge 1: Model Uncertainty

Power system model can be inaccurate

unknown inputs

$$\dot{x} = Ax + Bu + \frac{B_{w}w}{b} + \phi(x, u)$$

- unavailable inputs (not measured or difficult to measure)
- parameter inaccuracy
- Are more detailed models always better?
 - difficult to validate and calibrate
 - higher computational burden

Challenge 2: Cyber Attacks against PMU Measurements

- National Electric Sector Cybersecurity Organization Resource (NESCOR) failure scenarios
 - measurement data compromised due to PDC authentication compromise
 - communications compromised between PMUs and control center
- Different types of attacks against measurements
 - data integrity attack
 - denial of service attack
 - replay attack

Kalman Filters

- Extended Kalman Filter
 - used for linearized model
 - need to calculate Jabobian
- Unscented Kalman Filter
 - used for nonlinear model
 - no need to calculate Jabobian
 - numerical stability problem
- Cubature Kalman Filter
 - used for nonlinear model
 - large system with high nonlinearity
 - better numerical stability

Dynamic Observers

Real system dynamics

$$\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x} + \boldsymbol{B}\boldsymbol{u} + \boldsymbol{B}_{\boldsymbol{w}}\boldsymbol{w} + \boldsymbol{\phi}(\boldsymbol{x},\boldsymbol{u})$$

Observer dynamics

$$\dot{\hat{x}} = A\hat{x} + Bu + \phi(\hat{x}, u) + L(y - h(\hat{x}))$$

Observer design

$$\begin{bmatrix} \boldsymbol{A}^{\top}\boldsymbol{P} + \boldsymbol{P}\boldsymbol{A} + (\epsilon_{1}\rho + \epsilon_{2}\mu)\boldsymbol{I}_{n} - \sigma\boldsymbol{C}^{\top}\boldsymbol{C} & \boldsymbol{P} + \frac{\varphi\epsilon_{2} - \epsilon_{1}}{2}\boldsymbol{I}_{n} \\ \begin{pmatrix} \boldsymbol{P} + \frac{\varphi\epsilon_{2} - \epsilon_{1}}{2}\boldsymbol{I}_{n} \end{pmatrix}^{\top} & -\epsilon_{2}\boldsymbol{I}_{n} \end{bmatrix} < 0$$
$$\boldsymbol{L} = \frac{\sigma}{2}\boldsymbol{P}^{-1}\boldsymbol{C}^{\top}$$

W. Zhang, H. Su, H. Wang, and Z. Han, "Full-order and reducedorder observers for one-sided lipschitz nonlinear systems using riccati equations," *Commun. Nonlinear Sci. Numer. Simul.*, vol. 17, no. 12, pp. 4968–4977, 2012.

A Realistic Scenario for Dynamic State Estimation

- 16-machine 68-bus system
- Power system is modeled as 10th order nonlinear system
- Gaussian Process noise and measurement noise
- Model uncertainty
 - unknown $B_w w$

$$\mathbf{w}(t) = \begin{bmatrix} 0.5 \cos(\omega_u t) \\ 0.5 \sin(\omega_u t) \\ 0.5 \cos(\omega_u t) \\ 0.5 \sin(\omega_u t) \\ -e^{-5t} \\ 0.2 e^{-t} \cos(\omega_u t) \\ 0.2 \cos(\omega_u t) \\ 0.1 \sin(\omega_u t) \end{bmatrix}$$

- estimator only knows steady-state values of T_m and E_{fd}
- reduced admittance matrix is the steady-state one within 1 second after fault
- Initial guess of the states is far from the real states

Data Integrity Attack

Data integrity attack: 8 out of 64 measurements are scaled by k or 1/k (k = 0.6)

Data Integrity Attack (cont'd)

Estimation from EKF, CKF, and observer

Data Integrity Attack (cont'd)

Estimation from SR-UKF

Denial of Service Attack

8 measurements do not update for $t \in [3s, 6s]$

Replay Attack

8 measurements for $t \in [3s, 6s]$ equal those $t \in [0s, 3s]$

Conclusion

- We design a realistic scenario for DSE with significant model uncertainty and cyber attacks
- We compare different estimation approaches
 - observers are more robust to model uncertainty and cyber attacks
 - observers have theoretical guarantee for convergence
 - observers are easier to implement

References

- J. Qi, A. F. Taha, and J. Wang, "Comparing Kalman filters and observers for dynamic state estimation with model uncertainty and malicious cyber attacks," *IEEE Trans. Power Systems*, under review.
- A. F. Taha, J. Qi, J. Wang, and J. H. Panchal, "Risk mitigation for dynamic state estimation against cyber attacks and unknown inputs," *IEEE Trans. Smart Grid*, under review.
- J. Qi and K. Sun, J. Wang, and H. Liu, "Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability," *IEEE Trans. Smart Grid*, under review.
- K. Sun, J. Qi, and W. Kang, "Power system observability and dynamic state estimation for stability monitoring using synchrophasor measurements," *Control Engineering Practice*, in press.
- J. Qi, K. Sun, and W. Kang, "Adaptive optimal PMU placement based on empirical observability gramian," IFAC NOLCOS 2016, under review.
- J. Qi, K. Sun, and W. Kang, "Optimal PMU placement for power system dynamic state estimation by using empirical observability gramian," *IEEE Trans. Power Systems*, vol. 30, no. 4, pp. 2041–2054, Jul. 2015.
- W. Zhang, H. Su, H. Wang, and Z. Han, "Full-order and reducedorder observers for one-sided lipschitz nonlinear systems using riccati equations," *Commun. Nonlinear Sci. Numer. Simul.*, vol. 17, no. 12, pp. 4968–4977, 2012.

THANK YOU!